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Introduction

GNU/Linux has taken the world of computers by storm. At one time, personal com-
puter users were forced to choose among proprietary operating environments and
applications. Users had no way of fixing or improving these programs, could not look
“under the hood,” and were often forced to accept restrictive licenses. GNU/Linux
and other open source systems have changed that—now PC users, administrators, and
developers can choose a free operating environment complete with tools, applications,
and full source code.

A great deal of the success of GNU/Linux is owed to its open source nature.
Because the source code for programs is publicly available, everyone can take part in
development, whether by fixing a small bug or by developing and distributing a com-
plete major application. This opportunity has enticed thousands of capable developers
worldwide to contribute new components and improvements to GNU/Linux, to the
point that modern GNU/Linux systems rival the features of any proprietary system,
and distributions include thousands of programs and applications spanning many CD-
ROMs or DVDs.

The success of GNU/Linux has also validated much of the UNIX philosophy.
Many of the application programming interfaces (APIs) introduced in AT&T and BSD
UNIX variants survive in Linux and form the foundation on which programs are
built. The UNIX philosophy of many small command line-oriented programs working
together is the organizational principle that makes GNU/Linux so powerful. Even
when these programs are wrapped in easy-to-use graphical user interfaces, the under-
lying commands are still available for power users and automated scripts.

A powerful GNU/Linux application harnesses the power of these APIs and com-
mands in its inner workings. GNU/Linux’s APIs provide access to sophisticated fea-
tures such as interprocess communication, multithreading, and high-performance
networking. And many problems can be solved simply by assembling existing com-
mands and programs using simple scripts.

GNU and Linux

Where did the name GNU/Liux come from? You've certainly heard of Linux before,
and you may have heard of the GNU Project. You may not have heard the name
GNU/Linux, although you’re probably familiar with the system it refers to.

Linux is named after Linus Torvalds, the creator and original author of the kernel
that runs a GNU/Linux system. The kernel is the program that performs the most
basic functions of an operating system: It controls and interfaces with the computer’s
hardware, handles allocation of memory and other resources, allows multiple programs
to run at the same time, manages the file system, and so on.

XX



The kernel by itself doesn’t provide features that are useful to users. It can’t even
provide a simple prompt for users to enter basic commands. It provides no way for
users to manage or edit files, communicate with other computers, or write other pro-
grams. These tasks require the use of a wide array of other programs, including com-
mand shells, file utilities, editors, and compilers. Many of these programs, in turn, use
libraries of general-purpose functions, such as the library containing standard C library
functions, which are not included in the kernel.

On GNU/Linux systems, many of these other programs and libraries are software
developed as part of the GNU Project.' A great deal of this software predates the
Linux kernel. The aim of the GNU Project is “to develop a complete UNIX-like
operating system which is free software” (from the GNU Project Web site,
http://www.gnu.org).

The Linux kernel and software from the GNU Project has proven to be a powerful
combination. Although the combination is often called “Linux” for short, the complete
system couldn’t work without GNU software, any more than it could operate without
the kernel. For this reason, throughout this book we’ll refer to the complete system as
GNU/Linux, except when we are specifically talking about the Linux kernel.

The GNU General Public License

The source code contained in this book is covered by the GNU General Public License
(GPL), which is listed in Appendix F “GNU General Public License.” A great deal of
free software, especially GNU/Linux software, is licensed under it. For instance, the
Linux kernel itself is licensed under the GPL, as are many other GNU programs and
libraries you’ll find in GNU/Linux distributions. If you use the source code in this
book, be sure to read and understand the terms of the GPL.

The GNU Project Web site includes an extensive discussion of the GPL
(nttp://www.gnu.org/copyleft/) and other free software licenses.You can
find information about open source software licenses at http://www.opensource.org/
licenses/index.html.

Who Should Read This Book?

This book is intended for three types of readers:

= You might be a developer already experienced with programming for the
GNU/Linux system, and you want to learn about some of its advanced features
and capabilities. You might be interested in writing more sophisticated programs
with features such as multiprocessing, multithreading, interprocess communica-
tion, and interaction with hardware devices.You might want to improve your
programs by making them run faster, more reliably, and more securely, or by
designing them to interact better with the rest of the GNU/Linux system.

1. GNU is a recursive acronym: It stands for “GNU’s Not UNIX.”



= You might be a developer experienced with another UNIX-like system who’s
interested in developing GNU/Linux software, too. You might already be famil-
iar with standard APIs such as those in the POSIX specification. To develop
GNU/Linux software, you need to know the peculiarities of the system, its
limitations, additional capabilities, and conventions.

= You might be a developer making the transition from a non-UNIX environ-
ment, such as Microsoft’s Win32 platform.You might already be familiar with
the general principles of writing good software, but you need to know the spe-
cific techniques that GNU/Linux programs use to interact with the system and
with each other. And you want to make sure your programs fit naturally into the
GNU/Linux system and behave as users expect them to.

This book is not intended to be a comprehensive guide or reference to all aspects of
GNU/Linux programming. Instead, we’ll take a tutorial approach, introducing the
most important concepts and techniques, and giving examples of how to use them.
Section 1.5, “Finding More Information,” in Chapter 1, “Getting Started,” contains
references to additional documentation, where you can obtain complete details about
these and other aspects of GNU/Linux programming.

Because this is a book about advanced topics, we’ll assume that you are already
familiar with the C programming language and that you know how to use the stan-
dard C library functions in your programs. The C language is the most widely used
language for developing GNU/Linux software; most of the commands and libraries
that we discuss in this book, and most of the Linux kernel itself, are written in C.

The information in this book is equally applicable to C++ programs because that
language is roughly a superset of C. Even if you program in another language, you’ll
find this information useful because C language APIs and conventions are the lingua
franca of GNU/Linux.

If you've programmed on another UNIX-like system platform before, chances are
good that you already know your way around Linux’s low-level I/O functions (open,
read, stat, and so on). These are difterent from the standard C library’s I/O functions
(fopen, fprintf, fscanf, and so on). Both are useful in GNU/Linux programming, and
we use both sets of [/O functions throughout this book. If youre not familiar with
the low-level I/O functions, jump to the end of the book and read Appendix B,
“Low-Level I/0,” before you start Chapter 2, “Writing Good GNU/Linux Software.”

xxii



This book does not provide a general introduction to GNU/Linux systems.
We assume that you already have a basic knowledge of how to interact with a
GNU/Linux system and perform basic operations in graphical and command-line
environments. If youre new to GNU/Linux, start with one of the many excellent
introductory books, such as Michael Tolber’s Inside Linux (New Riders Publishing,
2001).

Conventions
This book follows a few typographical conventions:
= A new term is set in italics the first time it is introduced.

= Program text, functions, variables, and other “computer language” are set in a
fixed-pitch font—for example, printf ("Hello, world!\bksl n").

= Names of commands, files, and directories are also set in a fixed-pitch font—for
example, cd /.

= When we show interactions with a command shell, we use % as the shell prompt
(your shell 1s probably configured to use a different prompt). Everything after
the prompt is what you type, while other lines of text are the system’s response.

For example, in this interaction

% uname
Linux

the system prompted you with %.You entered the uname command. The system
responded by printing Linux.

= The title of each source code listing includes a filename in parentheses. If you
type in the listing, save it to a file by this name.You can also download the
source code listings from the Advanced Linux Programming Web site
(http://www.newriders.com or http://www.advancedlinuxprogramming.com).

We wrote this book and developed the programs listed in it using the Red Hat 6.2
distribution of GNU/Linux. This distribution incorporates release 2.2.14 of the Linux
kernel, release 2.1.3 of the GNU C library, and the EGCS 1.1.2 release of the GNU
C compiler. The information and programs in this book should generally be applicable
to other versions and distributions of GNU/Linux as well, including 2.4 releases of
the Linux kernel and 2.2 releases of the GNU C library.
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Getting Started

-I;Is CHAPTER SHOWS YOU HOW TO PERFORM THE BASIC steps required to create a

C or C++ Linux program. In particular, this chapter shows you how to create and
modify C and C++ source code, compile that code, and debug the result. If you're
already accustomed to programming under Linux, you can skip ahead to Chapter 2,
“Writing Good GNU/Linux Software;” pay careful attention to Section 2.3, “Writing
and Using Libraries,” for information about static versus dynamic linking that you
might not already know.

Throughout this book, we’ll assume that you're familiar with the C or C++ pro-
gramming languages and the most common functions in the standard C library. The
source code examples in this book are in C, except when demonstrating a particular
feature or complication of C++ programming. We also assume that you know how to
perform basic operations in the Linux command shell, such as creating directories and
copying files. Because many Linux programmers got started programming in the
Windows environment, we’ll occasionally point out similarities and contrasts between
‘Windows and Linux.



4

Chapter 1 Getting Started

1.1 Editing with Emacs

An editor 1s the program that you use to edit source code. Lots of different editors are
available for Linux, but the most popular and full-featured editor is probably GNU
Emacs.

About Emacs

Emacs is much more than an editor. It is an incredibly powerful program, so much so that at
CodeSourcery, it is affectionately known as the One True Program, or just the OTP for short. You can read
and send email from within Emacs, and you can customize and extend Emacs in ways far too numerous
to discuss here. You can even browse the Web from within Emacs!

If you’re familiar with another editor, you can certainly use it instead. Nothing in the
rest of this book depends on using Emacs. If you don’t already have a favorite Linux
editor, then you should follow along with the mini-tutorial given here.

If you like Emacs and want to learn about its advanced features, you might consider
reading one of the many Emacs books available. One excellent tutorial, Learning
GNU Emacs, is written by Debra Cameron, Bill Rosenblatt, and Eric S. Raymond
(O’Reilly, 1996).

1.1.1 Opening a C or C++ Source File

You can start Emacs by typing emacs in your terminal window and pressing the
Return key. When Emacs has been started, you can use the menus at the top to create
a new source file. Click the Files menu, choose Open Files, and then type the name of
the file that you want to open in the “minibuffer” at the bottom of the screen.' If you
want to create a C source file, use a filename that ends in .c or .h. If you want to
create a C++ source file, use a filename that ends in .cpp, .hpp, .cxx, .hxx, .C, or .H.
When the file is open, you can type as you would in any ordinary word-processing
program. To save the file, choose the Save Bufter entry on the Files menu. When
you're finished using Emacs, you can choose the Exit Emacs option on the Files
menu.

If you don'’t like to point and click, you can use keyboard shortcuts to automatically
open files, save files, and exit Emacs.To open a file, type C-x C-f. (The C-x means to
hold down the Control key and then press the x key.) To save a file, type C-x C-s.To
exit Emacs, just type C-x C-c. If you want to get a little better acquainted with Emacs,
choose the Emacs Tutorial entry on the Help menu. The tutorial provides you with
lots of tips on how to use Emacs effectively.

1. If you’re not running in an X Window system, you’ll have to press F10 to access the

menus.
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1.1.2 Automatic Formatting

If you’re accustomed to programming in an Integrated Development Environment (IDE),
you’ll also be accustomed to having the editor help you format your code. Emacs can
provide the same kind of functionality. If you open a C or C++ source file, Emacs
automatically figures out that the file contains source code, not just ordinary text. If
you hit the Tab key on a blank line, Emacs moves the cursor to an appropriately
indented point. If you hit the Tab key on a line that already contains some text, Emacs
indents the text. So, for example, suppose that you have typed in the following:

int main ()

{
printf ("Hello, world\n");

}
If you press the Tab key on the line with the call to printf, Emacs will reformat your
code to look like this:

int main ()

{
printf ("Hello, world\n");

}

Notice how the line has been appropriately indented.

As you use Emacs more, you’'ll see how it can help you perform all kinds of
complicated formatting tasks. If you’re ambitious, you can program Emacs to perform
literally any kind of automatic formatting you can imagine. People have used this
facility to implement Emacs modes for editing just about every kind of document,
to implement games’, and to implement database front ends.

1.1.3 Syntax Highlighting

In addition to formatting your code, Emacs can make it easier to read C and C++
code by coloring different syntax elements. For example, Emacs can turn keywords
one color, built-in types such as int another color, and comments another color.
Using color makes it a lot easier to spot some common syntax errors.
The easiest way to turn on colorization is to edit the file ~/.emacs and insert the
following string:
(global-font-lock-mode t)

Save the file, exit Emacs, and restart. Now open a C or C++ source file and enjoy!

You might have noticed that the string you inserted into your .emacs looks like
code from the LISP programming language. That’s because it is LISP code! Much of
Emacs is actually written in LISP. You can add functionality to Emacs by writing more
LISP code.

2.Try running the command M-x dunnet if you want to play an old-fashioned text

adventure game.
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1.2 Compiling with GCC

A compiler turns human-readable source code into machine-readable object code that
can actually run. The compilers of choice on Linux systems are all part of the GNU
Compiler Collection, usually known as GCC.> GCC also include compilers for C,
C++, Java, Objective-C, Fortran, and Chill. This book focuses mostly on C and C++
programming.

Suppose that you have a project like the one in Listing 1.2 with one C++ source
file (reciprocal.cpp) and one C source file (main.c) like in Listing 1.1. These two files
are supposed to be compiled and then linked together to produce a program called
reciprocal.* This program will compute the reciprocal of an integer.

Listing 1.1 (main.c) C source file—main.c

#include <stdio.h>
#include "reciprocal.hpp"

int main (int argc, char **argv)

{

int i;

i = atoi (argv[1]);
printf ("The reciprocal of %d is %g\n", i, reciprocal (i));
return 0;

}

Listing 1.2 (reciprocal.cpp) C++ source file—reciprocal.cpp

#include <cassert>
#include "reciprocal.hpp"

double reciprocal (int i) {
// I should be non-zero.
assert (i !=0);
return 1.0/1i;

}

3. For more information about GCC, visit http://gcc.gnu.org.

4. In Windows, executables usually have names that end in .exe. Linux programs, on the
other hand, usually have no extension. So, the Windows equivalent of this program would
probably be called reciprocal.exe; the Linux version is just plain reciprocal.
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There’s also one header file called reciprocal.hpp (see Listing 1.3).

Listing 1.3  (reciprocal.hpp) Header file—reciprocal.hpp

#ifdef __cplusplus
extern "C" {
#endif

extern double reciprocal (int i);
#ifdef __cplusplus

}
#endif

The first step is to turn the C and C++ source code into object code.

1.2.1 Compiling a Single Source File

The name of the C compiler is gcc. To compile a C source file, you use the -c
option. So, for example, entering this at the command prompt compiles the main.c
source file:

% gcc -c main.c

The resulting object file is named main.o.
The C++ compiler is called g++. Its operation is very similar to gcc; compiling
reciprocal.cpp is accomplished by entering the following:

% gtt+ -c reciprocal.cpp

The -c option tells g++ to compile the program to an object file only; without it, g++
will attempt to link the program to produce an executable. After you've typed this
command, you’ll have an object file called reciprocal.o.

You’ll probably need a couple other options to build any reasonably large program.
The -1 option is used to tell GCC where to search for header files. By default, GCC
looks in the current directory and in the directories where headers for the standard
libraries are installed. If you need to include header files from somewhere else, you’ll
need the -I option. For example, suppose that your project has one directory called
src, for source files, and another called include.You would compile reciprocal.cpp
like this to indicate that g++ should use the ../include directory in addition to find
reciprocal.hpp:

% g++ -c -I ../include reciprocal.cpp
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Sometimes you’ll want to define macros on the command line. For example, in
production code, you don’t want the overhead of the assertion check present in
reciprocal.cpp; that’s only there to help you debug the program.You turn off
the check by defining the macro NDEBUG. You could add an explicit #define to

reciprocal.cpp, but that would require changing the source itself. It’s easier to
simply define NDEBUG on the command line, like this:

% g++ -c -D NDEBUG reciprocal.cpp

If you had wanted to define NDEBUG to some particular value, you could have done
something like this:

% g++ -c -D NDEBUG=3 reciprocal.cpp

If you're really building production code, you probably want to have GCC optimize
the code so that it runs as quickly as possible. You can do this by using the -02
command-line option. (GCC has several different levels of optimization; the second
level is appropriate for most programs.) For example, the following compiles
reciprocal.cpp with optimization turned on:

% gt+ -c -02 reciprocal.cpp

Note that compiling with optimization can make your program more difficult to
debug with a debugger (see Section 1.4, “Debugging with GDB”). Also, in certain
instances, compiling with optimization can uncover bugs in your program that did not
manifest themselves previously.

You can pass lots of other options to gcc and g++. The best way to get a complete
list is to view the online documentation.You can do this by typing the following at
your command prompt:

% info gcc

1.2.2 Linking Object Files

Now that you've compiled main.c and utilities.cpp, you’ll want to link them.You
should always use g++ to link a program that contains C++ code, even if it also con-
tains C code. If your program contains only C code, you should use gcc instead.
Because this program contains both C and C++, you should use g++, like this:

% g++ -0 reciprocal main.o reciprocal.o

The -0 option gives the name of the file to generate as output from the link step.
Now you can run reciprocal like this:

% ./reciprocal 7
The reciprocal of 7 is 0.142857

As you can see, g++ has automatically linked in the standard C runtime library con-
taining the implementation of printf. If you had needed to link in another library
(such as a graphical user interface toolkit), you would have specified the library with
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the -1 option. In Linux, library names almost always start with 1ib. For example,
the Pluggable Authentication Module (PAM) library is called libpam.a.To link in
libpam.a, you use a command like this:

% g++ -0 reciprocal main.o reciprocal.o -lpam

The compiler automatically adds the 1ib prefix and the .a suffix.

As with header files, the linker looks for libraries in some standard places, including
the /1ib and /usr/lib directories that contain the standard system libraries. If you
want the linker to search other directories as well, you should use the -L option,
which is the parallel of the -I option discussed earlier. You can use this line to instruct
the linker to look for libraries in the /usr/local/lib/pam directory before looking in
the usual places:

% g++ -0 reciprocal main.o reciprocal.o -L/usr/local/lib/pam -lpam

Although you don’t have to use the -I option to get the preprocessor to search the
current directory, you do have to use the -L option to get the linker to search the
current directory. In particular, you could use the following to instruct the linker to
find the test library in the current directory:

% gcc -0 app app.o -L. -ltest

1.3 Automating the Process with GNU Make

If you’re accustomed to programming for the Windows operating system, youre prob-
ably accustomed to working with an Integrated Development Environment (IDE). You
add sources files to your project, and then the IDE builds your project automatically.
Although IDEs are available for Linux, this book doesn’t discuss them. Instead, this
book shows you how to use GNU Make to automatically recompile your code, which
is what most Linux programmers actually do.

The basic idea behind make is simple. You tell make what targets you want to build
and then give rules explaining how to build them.You also specify dependencies that
indicate when a particular target should be rebuilt.

In our sample reciprocal project, there are three obvious targets: reciprocal.o,
main.o, and the reciprocal itself. You already have rules in mind for building these
targets in the form of the command lines given previously. The dependencies require a
little bit of thought. Clearly, reciprocal depends on reciprocal.o and main.o because
you can'’t link the complete program until you have built each of the object files. The
object files should be rebuilt whenever the corresponding source files change. There’s
one more twist in that a change to reciprocal.hpp also should cause both of the
object files to be rebuilt because both source files include that header file.

In addition to the obvious targets, there should always be a clean target. This target
removes all the generated object files and programs so that you can start fresh. The rule
for this target uses the rm command to remove the files.
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You can convey all that information to make by putting the information in a file
named Makefile. Here’s what Makefile contains:

reciprocal: main.o reciprocal.o
g++ $(CFLAGS) -0 reciprocal main.o reciprocal.o

main.o: main.c reciprocal.hpp
gcc $(CFLAGS) -c main.c

reciprocal.o: reciprocal.cpp reciprocal.hpp
g++ $(CFLAGS) -c reciprocal.cpp

clean:
rm -f *.0 reciprocal

You can see that targets are listed on the left, followed by a colon and then any depen-
dencies. The rule to build that target is on the next line. (Ignore the $(CFLAGS) bit
for the moment.) The line with the rule on it must start with a Tab character, or make
will get confused. If you edit your Makefile in Emacs, Emacs will help you with the
formatting.

If you remove the object files that you’ve already built, and just type

% make

on the command-line, you’ll see the following:

% make

gcc -c main.c

g++ -c reciprocal.cpp

g++ -0 reciprocal main.o reciprocal.o

You can see that make has automatically built the object files and then linked them.

If you now change main.c in some trivial way and type make again, you'll see the
following:

% make

gcc -¢ main.c

g++ -0 reciprocal main.o reciprocal.o
You can see that make knew to rebuild main.o and to re-link the program, but it
didn’t bother to recompile reciprocal.cpp because none of the dependencies for
reciprocal.o had changed.

The $(CFLAGS) is a make variable.You can define this variable either in the
Makefile itself or on the command line. GNU make will substitute the value of the
variable when it executes the rule. So, for example, to recompile with optimization
enabled, you would do this:

% make clean

rm -f *.o reciprocal

% make CFLAGS=-02

gcc -02 -c main.c

g++ -02 -c reciprocal.cpp

g++ -02 -0 reciprocal main.o reciprocal.o
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Note that the -02 flag was inserted in place of $(CFLAGS) in the rules.
In this section, you've seen only the most basic capabilities of make.You can find
out more by typing this:

% info make

In that manual, you’ll find information about how to make maintaining a Makefile
easier, how to reduce the number of rules that you need to write, and how to auto-
matically compute dependencies.You can also find more information in GNU,
Autoconf, Automake, and Libtool by Gary V.Vaughan, Ben Elliston, Tom Tromey, and
Ian Lance Taylor (New Riders Publishing, 2000).

1.4 Debugging with GNU Debugger (GDB)

The debugger is the program that you use to figure out why your program isn’t behav-
ing the way you think it should.You’ll be doing this a lot.” The GNU Debugger
(GDB) is the debugger used by most Linux programmers.You can use GDB to step
through your code, set breakpoints, and examine the value of local variables.

1.4.1 Compiling with Debugging Information

To use GDB, you’ll have to compile with debugging information enabled. Do this by
adding the -g switch on the compilation command line. If you’re using a Makefile as
described previously, you can just set CFLAGS equal to -g when you run make, as shown
here:

% make CFLAGS=-g

gcc -g -c main.c

g+t -g -c reciprocal.cpp

g+t -g -0 reciprocal main.o reciprocal.o
When you compile with -g, the compiler includes extra information in the object files
and executables. The debugger uses this information to figure out which addresses cor-
respond to which lines in which source files, how to print out local variables, and so
forth.

1.4.2 Running GDB
You can start up gdb by typing:

% gdb reciprocal

When gdb starts up, you should see the GDB prompt:
(gdb)

5. ...unless your programs always work the first time.

11
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The first step is to run your program inside the debugger. Just enter the command run
and any program arguments. Try running the program without any arguments, like
this:

(gdb) run
Starting program: reciprocal

Program received signal SIGSEGV, Segmentation fault.
__strtol_internal (nptr=0x0, endptr=0x0, base=10, group=0)
at strtol.c:287

287 strtol.c: No such file or directory.

(gdb)
The problem is that there is no error-checking code in main. The program expects
one argument, but in this case the program was run with no arguments. The SIGSEGV
message indicates a program crash. GDB knows that the actual crash happened in a
function called __strtol_internal.That function is in the standard library, and the
source isn’t installed, which explains the “No such file or directory” message. You can
see the stack by using the where command:

(gdb) where

#0 __strtol_internal (nptr=0x@, endptr=0x0, base=10, group=0)

at strtol.c:287

#1 0x40096fb6 in atoi (nptr=0x0) at ../stdlib/stdlib.h:251

#2 0x804863e in main (argc=1, argv=0xbffffbe4) at main.c:8
You can see from this display that main called the atoi function with a NULL pointer,
which is the source of the trouble.

You can go up two levels in the stack until you reach main by using the up

command:
(gdb) up 2
#2 0x804863e in main (argc=1, argv=0xbffff5e4) at main.c:8
8 i = atoi (argv[1]);

Note that gdb is capable of finding the source for main.c, and it shows the line where
the erroneous function call occurred. You can view the value of variables using the
print command:

(gdb) print argv[1]

$2 = 0x0
That confirms that the problem is indeed a NULL pointer passed into atoi.

You can set a breakpoint by using the break command:

(gdb) break main
Breakpoint 1 at 0x804862e: file main.c, line 8.
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This command sets a breakpoint on the first line of main.® Now try rerunning the
program with an argument, like this:

(gdb) run 7

Starting program: reciprocal 7

Breakpoint 1, main (argc=2, argv=0xbffff5e4) at main.c:8
8 i = atoi (argv[1]);

You can see that the debugger has stopped at the breakpoint.
You can step over the call to atoi using the next command:

(gdb) next
9 printf ("The reciprocal of %d is %g\n", i, reciprocal (i));

If you want to see what’s going on inside reciprocal, use the step command like this:

(gdb) step
reciprocal (i=7) at reciprocal.cpp:6
6 assert (i !=0);

You'’re now in the body of the reciprocal function.

You might find it more convenient to run gdb from within Emacs rather than using
gdb directly from the command line. Use the command M-x gdb to start up gdb in an
Emacs window:. If you are stopped at a breakpoint, Emacs automatically pulls up the
appropriate source file. It’s easier to figure out what’s going on when you're looking at
the whole file rather than just one line of text.

1.5 Finding More Information

Nearly every Linux distribution comes with a great deal of useful documentation. You
could learn most of what we’ll talk about in this book by reading documentation in
your Linux distribution (although it would probably take you much longer). The doc-
umentation isn’t always well-organized, though, so the tricky part is finding what you
need. Documentation is also sometimes out-of-date, so take everything that you read
with a grain of salt. If the system doesn’t behave the way a man page (manual pages)
says it should, for instance, it may be that the man page is outdated.

To help you navigate, here are the most useful sources of information about
advanced Linux programming.

6. Some people have commented that saying break main is a little bit funny because

usually you want to do this only when main is already broken.

13



14

Chapter 1 Getting Started

1.5.1 Man Pages

Linux distributions include man pages for most standard commands, system calls, and
standard library functions. The man pages are divided into numbered sections; for pro-
grammers, the most important are these:

(1) User commands
(2) System calls
(3) Standard library functions

(8) System/administrative commands

The numbers denote man page sections. Linux’s man pages come installed on your
system; use the man command to access them. To look up a man page, simply invoke
man name, where name is a command or function name. In a few cases, the same name
occurs in more than one section; you can specify the section explicitly by placing the
section number before the name. For example, if you type the following, you’ll get the
man page for the sleep command (in section 1 of the Linux man pages):

% man sleep

To see the man page for the sleep library function, use this command:

% man 3 sleep

Each man page includes a one-line summary of the command or function. The
whatis name command displays all man pages (in all sections) for a command or
function matching name. If you’re not sure which command or function you want,
you can perform a keyword search on the summary lines, using man -k keyword.
Man pages include a lot of very useful information and should be the first place
you turn for help. The man page for a command describes command-line options and
arguments, input and output, error codes, configuration, and the like. The man page
for a system call or library function describes parameters and return values, lists error
codes and side eftects, and specifies which include file to use if you call the function.

1.5.2 Info

The Info documentation system contains more detailed documentation for many core
components of the GNU/Linux system, plus several other programs. Info pages are
hypertext documents, similar to Web pages. To launch the text-based Info browser, just
type info in a shell window.You'll be presented with a menu of Info documents
installed on your system. (Press Control+H to display the keys for navigating an Info
document.)

Among the most useful Info documents are these:

= gcc—The gee compiler
= libc—The GNU C library, including many system calls
s gdb—The GNU debugger
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= emacs—The Emacs text editor

= info—The Info system itself

Almost all the standard Linux programming tools (including 1d, the linker; as, the
assembler; and gprof, the profiler) come with useful Info pages.You can jump directly
to a particular Info document by specifying the page name on the command line:

% info libc

If you do most of your programming in Emacs, you can access the built-in Info
browser by typing M-x info or C-h i.

1.5.3 Header Files

You can learn a lot about the system functions that are available and how to use
them by looking at the system header files. These reside in /usr/include and
/usr/include/sys. If you are getting compile errors from using a system call, for
instance, take a look in the corresponding header file to verify that the function’s
signature is the same as what’s listed in the man page.

On Linux systems, a lot of the nitty-gritty details of how the system calls work are
reflected in header files in the directories /usr/include/bits, /usr/include/asm, and
/usr/include/linux. For instance, the numerical values of signals (described in Section
3.3, “Signals,” in Chapter 3, “Processes”) are defined in /usr/include/bits/signum.h.
These header files make good reading for inquiring minds. Don’t include them
directly in your programs, though; always use the header files in /usr/include or as
mentioned in the man page for the function youre using.

1.5.4 Source Code

This 1s Open Source, right? The final arbiter of how the system works is the system
source code itself, and luckily for Linux programmers, that source code is freely avail-
able. Chances are, your Linux distribution includes full source code for the entire sys-
tem and all programs included with it; if not, youre entitled under the terms of the
GNU General Public License to request it from the distributor. (The source code
might not be installed on your disk, though. See your distribution’s documentation for
instructions on installing it.)

The source code for the Linux kernel itself is usually stored under /usr/src/linux.
If this book leaves you thirsting for details of how processes, shared memory, and sys-
tem devices work, you can always learn straight from the source code. Most of the
system functions described in this book are implemented in the GNU C library;
check your distribution’s documentation for the location of the C library source code.

15






Writing Good GNU/Linux
Software

-I;Is CHAPTER COVERS SOME BASIC TECHNIQUES THAT MOST GNU/Linux program-
mers use. By following the guidelines presented, you’ll be able to write programs that
work well within the GNU/Linux environment and meet GNU/Linux users’ expec-
tations of how programs should operate.

2.1 Interaction With the Execution Environment

When you first studied C or C++, you learned that the special main function is the
primary entry point for a program. When the operating system executes your pro-
gram, it automatically provides certain facilities that help the program communicate
with the operating system and the user.You probably learned about the two parame-
ters to main, usually called argc and argv, which receive inputs to your program.
You learned about the stdout and stdin (or the cout and cin streams in C++) that
provide console input and output. These features are provided by the C and C++
languages, and they interact with the GNU/Linux system in certain ways. GNU/
Linux provides other ways for interacting with the operating environment, too.
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2.1.1 The Argument List

You run a program from a shell prompt by typing the name of the program.
Optionally, you can supply additional information to the program by typing one or
more words after the program name, separated by spaces. These are called command-line
arguments. (You can also include an argument that contains a space, by enclosing the
argument in quotes.) More generally, this is referred to as the program’s argument list
because it need not originate from a shell command line. In Chapter 3, “Processes,”
you’ll see another way of invoking a program, in which a program can specify the
argument list of another program directly.

When a program is invoked from the shell, the argument list contains the entire
command line, including the name of the program and any command-line arguments
that may have been provided. Suppose, for example, that you invoke the 1s command
in your shell to display the contents of the root directory and corresponding file sizes
with this command line:

% 1ls -s /

The argument list that the 1s program receives has three elements. The first one is the
name of the program itself, as specified on the command line, namely 1s.The second
and third elements of the argument list are the two command-line arguments, -s and /.

The main function of your program can access the argument list via the argc and
argv parameters to main (if you don’t use them, you may simply omit them). The first
parameter, argc, is an integer that is set to the number of items in the argument list.
The second parameter, argv, is an array of character pointers. The size of the array is
argc, and the array elements point to the elements of the argument list, as NUL-
terminated character strings.

Using command-line arguments is as easy as examining the contents of argc and
argv. If you're not interested in the name of the program itself, don’t forget to skip the
first element.

Listing 2.1 demonstrates how to use argc and argv.

Listing 2.1  (arglist.c) Using argc and argv

#include <stdio.h>

int main (int argc, char* argv[])
{
printf ("The name of this program is 'S%s'.\n", argv[0]);
printf ("This program was invoked with %d arguments.\n", argc - 1);

/* Were any command-line arguments specified? */
if (argec > 1) {

/* Yes, print them. */

int i;

printf ("The arguments are:\n");

for (i = 1; i < argc; ++1i)
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printf (" %s\n", argv[i]);

}

return 0;

}

2.1.2 GNU/Linux Command-Line Conventions

Almost all GNU/Linux programs obey some conventions about how command-line

arguments are interpreted. The arguments that programs expect fall into two cate-

gories: options (or flags) and other arguments. Options modify how the program

behaves, while other arguments provide inputs (for instance, the names of input files).
Options come in two forms:

s Short options consist of a single hyphen and a single character (usually a lowercase
or uppercase letter). Short options are quicker to type.

= Long options consist of two hyphens, followed by a name made of lowercase and
uppercase letters and hyphens. Long options are easier to remember and easier
to read (in shell scripts, for instance).

Usually, a program provides both a short form and a long form for most options it
supports, the former for brevity and the latter for clarity. For example, most programs
understand the options -h and - -help, and treat them identically. Normally, when a
program is invoked from the shell, any desired options follow the program name
immediately. Some options expect an argument immediately following. Many pro-
grams, for example, interpret the option --output foo to specify that output of the
program should be placed in a file named foo. After the options, there may follow
other command-line arguments, typically input files or input data.

For example, the command 1s -s / displays the contents of the root directory. The
-s option modifies the default behavior of 1s by instructing it to display the size (in
kilobytes) of each entry. The / argument tells 1s which directory to list. The - -size
option is synonymous with -s, so the same command could have been invoked as
ls --size /.

The GNU Coding Standards list the names of some commonly used command-line
options. If you plan to provide any options similar to these, it’s a good idea to use the
names specified in the coding standards. Your program will behave more like other
programs and will be easier for users to learn.You can view the GNU Coding
Standards’ guidelines for command-line options by invoking the following from a shell
prompt on most GNU/Linux systems:

% info "(standards)User Interfaces"

19
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2.1.3 Using getopt_long

Parsing command-line options is a tedious chore. Luckily, the GNU C library provides
a function that you can use in C and C++ programs to make this job somewhat easier
(although still a bit annoying). This function, getopt_long, understands both short and
long options. If you use this function, include the header file <getopt.h>.

Suppose, for example, that you are writing a program that is to accept the three
options shown in Table 2.1.

Table 2.1 Example Program Options

Short Form Long Form Purpose

-h --help Display usage summary and exit
-0 filename --output filename Specify output filename

-V --verbose Print verbose messages

In addition, the program is to accept zero or more additional command-line
arguments, which are the names of input files.

To use getopt_long, you must provide two data structures. The first is a character
string containing the valid short options, each a single letter. An option that requires
an argument is followed by a colon. For your program, the string ho:v indicates that
the valid options are -h, -0, and -v, with the second of these options followed by an
argument.

To specify the available long options, you construct an array of struct option ele-
ments. Each element corresponds to one long option and has four fields. In normal
circumstances, the first field is the name of the long option (as a character string, with-
out the two hyphens); the second is 1 if the option takes an argument, or 0 otherwise;
the third is NULL; and the fourth is a character constant specifying the short option
synonym for that long option. The last element of the array should be all zeros. You
could construct the array like this:

const struct option long_options[] = {

{ "help", 0, NULL, 'h' },
{ "output", 1, NULL, 'o' },
{ "verbose", 0, NULL, 'v' },
{ NULL, 0, NULL, ©O }
}

You invoke the getopt_long function, passing it the argc and argv arguments to main,
the character string describing short options, and the array of struct option elements
describing the long options.
= Each time you call getopt_long, it parses a single option, returning the short-
option letter for that option, or —1 if no more options are found.

= Typically, you’ll call getopt_long in a loop, to process all the options the user has
specified, and you’ll handle the specific options in a switch statement.
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= If getopt_long encounters an invalid option (an option that you didn’t specify as
a valid short or long option), it prints an error message and returns the character
? (a question mark). Most programs will exit in response to this, possibly after
displaying usage information.

= When handling an option that takes an argument, the global variable optarg
points to the text of that argument.

= After getopt_long has finished parsing all the options, the global variable optind
contains the index (into argv) of the first nonoption argument.

Listing 2.2 shows an example of how you might use getopt_long to process your
arguments.

Listing 2.2 (getopt_long.c) Using getopt_long

#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>

/* The name of this program. */
const char* program_name;

/* Prints usage information for this program to STREAM (typically
stdout or stderr), and exit the program with EXIT_CODE. Does not

return. */

void print_usage (FILE* stream, int exit_code)

{
fprintf (stream, "Usage: %s options [ inputfile ... ]\n", program_name);
fprintf (stream,
“ -h --help Display this usage information.\n"
" -0 --output filename Write output to file.\n"
" -v --verbose Print verbose messages.\n");
exit (exit_code);
}

/* Main program entry point. ARGC contains number of argument list
elements; ARGV is an array of pointers to them. */

int main (int argc, char* argv[])
{

int next_option;

/* A string listing valid short options letters. */
const char* const short_options = "ho:v";
/* An array describing valid long options. */
const struct option long_options[] = {
{ "help", 0, NULL, 'h' },
{ "output", 1, NULL, 'o' },
{ "verbose", @, NULL, 'v' },

continues
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Listing 2.2 Continued

{ NULL, 0, NULL, @ } /* Required at end of array. */
b

/* The name of the file to receive program output, or NULL for
standard output. */

const char* output_filename = NULL;

/* Whether to display verbose messages. */

int verbose = 0;

/* Remember the name of the program, to incorporate in messages.
The name is stored in argv[0]. */
program_name = argv[0];

do {
next_option = getopt_long (argc, argv, short_options,
long_options, NULL);
switch (next_option)

{
case 'h': /* -h or --help */
/* User has requested usage information. Print it to standard
output, and exit with exit code zero (normal termination). */
print_usage (stdout, 0);
case '0': /* -0 or --output */

/* This option takes an argument, the name of the output file. */
output_filename = optarg;

break;
case 'v': /* -v or --verbose */
verbose = 1;
break;
case '?': /* The user specified an invalid option. */

/* Print usage information to standard error, and exit with exit
code one (indicating abnormal termination). */
print_usage (stderr, 1);

case -1: /* Done with options. */
break;
default: /* Something else: unexpected. */
abort ();
}
}
while (next_option != -1);

/* Done with options. OPTIND points to first nonoption argument.
For demonstration purposes, print them if the verbose option was
specified. */
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if (verbose) {
int i;
for (i = optind; i < argc; ++i)
printf ("Argument: %s\n", argv[i]);

}
/* The main program goes here. */

return 0;

Using getopt_long may seem like a lot of work, but writing code to parse the
command-line options yourself would take even longer. The getopt_long function is
very sophisticated and allows great flexibility in specifying what kind of options to
accept. However, it’s a good idea to stay away from the more advanced features and
stick with the basic option structure described.

2.1.4 Standard I/0

The standard C library provides standard input and output streams (stdin and stdout,
respectively). These are used by scanf, printf, and other library functions. In the
UNIX tradition, use of standard input and output is customary for GNU/Linux pro-
grams. This allows the chaining of multiple programs using shell pipes and input and
output redirection. (See the man page for your shell to learn its syntax.)

The C library also provides stderr, the standard error stream. Programs should
print warning and error messages to standard error instead of standard output. This
allows users to separate normal output and error messages, for instance, by redirecting
standard output to a file while allowing standard error to print on the console. The
fprintf function can be used to print to stderr, for example:

fprintf (stderr, ("Error: ..."));

These three streams are also accessible with the underlying UNIX I/O commands
(read, write, and so on) via file descriptors. These are file descriptors O for stdin, 1 for
stdout, and 2 for stderr.

When invoking a program, it is sometimes useful to redirect both standard output
and standard error to a file or pipe. The syntax for doing this varies among shells; for
Bourne-style shells (including bash, the default shell on most GNU/Linux distribu-
tions), the syntax is this:

% program > output_file.txt 2>&1
% program 2>&1 | filter

The 2>&1 syntax indicates that file descriptor 2 (stderr) should be merged into
file descriptor 1 (stdout). Note that 2>&1 must follow a file redirection (the first exam-
ple) but must precede a pipe redirection (the second example).
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Note that stdout is buffered. Data written to stdout is not sent to the console
(or other device, if it’s redirected) until the bufter fills, the program exits normally, or
stdout is closed.You can explicitly flush the buffer by calling the following:

fflush (stdout);

In contrast, stderr is not buffered; data written to stderr goes directly to the console.'

This can produce some surprising results. For example, this loop does not print one
period every second; instead, the periods are buffered, and a bunch of them are printed
together when the buffer fills.
while (1) {
printf (".");
sleep (1);
}

In this loop, however, the periods do appear once a second:
while (1) {
fprintf (stderr, ".");
sleep (1);
}

2.1.5 Program Exit Codes

When a program ends, it indicates its status with an exit code. The exit code is a

small integer; by convention, an exit code of zero denotes successful execution,

while nonzero exit codes indicate that an error occurred. Some programs use difterent
nonzero exit code values to distinguish specific errors.

With most shells, it’s possible to obtain the exit code of the most recently executed
program using the special $? variable. Here’s an example in which the 1s command is
invoked twice and its exit code is printed after each invocation. In the first case, 1s
executes correctly and returns the exit code zero. In the second case, 1s encounters an
error (because the filename specified on the command line does not exist) and thus
returns a nonzero exit code.

% 1s /

bin coda etc lib misc nfs proc sbin usr
boot dev  home lost+found mnt opt root tmp var
% echo $?

0

% 1s bogusfile
1s: bogusfile: No such file or directory
echo $?

— e

1.In C++, the same distinction holds for cout and cerr, respectively. Note that the endl
token flushes a stream in addition to printing a newline character; if you don’t want to flush the
stream (for performance reasons, for example), use a newline constant, '\n', instead.
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A C or C++ program specifies its exit code by returning that value from the main
function. There are other methods of providing exit codes, and special exit codes
are assigned to programs that terminate abnormally (by a signal). These are discussed
further in Chapter 3.

2.1.6 The Environment

GNU/Linux provides each running program with an environment. The environment is
a collection of variable/value pairs. Both environment variable names and their values
are character strings. By convention, environment variable names are spelled in all
capital letters.

You're probably familiar with several common environment variables already. For
instance:

= USER contains your username.
= HOME contains the path to your home directory.

= PATH contains a colon-separated list of directories through which Linux searches
for commands you invoke.

= DISPLAY contains the name and display number of the X Window server on
which windows from graphical X Window programs will appear.

Your shell, like any other program, has an environment. Shells provide methods for
examining and modifying the environment directly. To print the current environment
in your shell, invoke the printenv program.Various shells have different built-in syntax
for using environment variables; the following is the syntax for Bourne-style shells.

= The shell automatically creates a shell variable for each environment variable
that it finds, so you can access environment variable values using the $varname
syntax. For instance:

% echo $USER
samuel

% echo $HOME
/home/samuel

= You can use the export command to export a shell variable into the environ-
ment. For example, to set the EDITOR environment variable, you would use this:

% EDITOR=emacs
% export EDITOR

Or, for short:

% export EDITOR=emacs
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In a program, you access an environment variable with the getenv function in
<stdlib.h>.That function takes a variable name and returns the corresponding value
as a character string, or NULL if that variable is not defined in the environment. To set
or clear environment variables, use the setenv and unsetenv functions, respectively.

Enumerating all the variables in the environment is a little trickier. To do this, you
must access a special global variable named environ, which is defined in the GNU C
library. This variable, of type char**, is a NULL-terminated array of pointers to character
strings. Each string contains one environment variable, in the form VARIABLE=value.

The program in Listing 2.3, for instance, simply prints the entire environment by
looping through the environ array.

Listing 2.3  (print-env.c) Printing the Execution Environment

#include <stdio.h>

/* The ENVIRON variable contains the environment. */
extern char** environ;

int main ()
{
char** var;
for (var = environ; *var != NULL; ++var)
printf ("%s\n", *var);
return 0;

}

Don’t modify environ yourself; use the setenv and unsetenv functions instead.
Usually, when a new program is started, it inherits a copy of the environment of
the program that invoked it (the shell program, if it was invoked interactively). So, for
instance, programs that you run from the shell may examine the values of environment

variables that you set in the shell.

Environment variables are commonly used to communicate configuration informa-
tion to programs. Suppose, for example, that you are writing a program that connects to
an Internet server to obtain some information.You could write the program so that the
server name is specified on the command line. However, suppose that the server name
is not something that users will change very often.You can use a special environment
variable—say SERVER_NAME—to specify the server name; if that variable doesn’t exist, a
default value is used. Part of your program might look as shown in Listing 2.4.

Listing 2.4 (client.c) Part of a Network Client Program

#include <stdio.h>
#include <stdlib.h>

int main ()

{
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char* server_name = getenv ("SERVER_NAME");
if (server_name == NULL)
/* The SERVER_NAME environment variable was not set. Use the
default. */
server_name = "server.my-company.com";

printf ("accessing server %s\n", server_name);
/* Access the server here... */

return 0;

Suppose that this program is named client. Assuming that you haven’t set the
SERVER_NAME variable, the default value for the server name is used:

% client
accessing server server.my-company.com

But it’s easy to specify a different server:

% export SERVER_NAME=backup-server.elsewhere.net
% client
accessing server backup-server.elsewhere.net

2.1.7 Using Temporary Files

Sometimes a program needs to make a temporary file, to store large data for a while or
to pass data to another program. On GNU/Linux systems, temporary files are stored
in the /tmp directory. When using temporary files, you should be aware of the follow-
ing pitfalls:

= More than one instance of your program may be run simultaneously (by the
same user or by different users). The instances should use different temporary
filenames so that they don’t collide.

= The file permissions of the temporary file should be set in such a way that
unauthorized users cannot alter the program’s execution by modifying or
replacing the temporary file.

= Temporary filenames should be generated in a way that cannot be predicted
externally; otherwise, an attacker can exploit the delay between testing whether
a given name is already in use and opening a new temporary file.

GNU/Linux provides functions, mkstemp and tmpfile, that take care of these issues for
you (in addition to several functions that don’t). Which you use depends on whether
you plan to hand the temporary file to another program, and whether you want to use
UNIX 170 (open, write, and so on) or the C library’s stream 1/O functions (fopen,
fprintf, and so on).
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Using mkstemp

The mkstemp function creates a unique temporary filename from a filename template,
creates the file with permissions so that only the current user can access it, and opens
the file for read/write. The filename template is a character string ending with
XXXXXX” (six capital X’s); mkstemp replaces the X’s with characters so that the file-
name is unique. The return value is a file descriptor; use the write family of functions
to write to the temporary file.

Temporary files created with mkstemp are not deleted automatically. It’s up to you
to remove the temporary file when it’s no longer needed. (Programmers should be
very careful to clean up temporary files; otherwise, the /tmp file system will fill up
eventually, rendering the system inoperable.) If the temporary file is for internal use
only and won’t be handed to another program, it’s a good idea to call unlink on the
temporary file immediately. The unlink function removes the directory entry corre-
sponding to a file, but because files in a file system are reference-counted, the file itself
is not removed until there are no open file descriptors for that file, either. This way,
your program may continue to use the temporary file, and the file goes away automat-
ically as soon as you close the file descriptor. Because Linux closes file descriptors
when a program ends, the temporary file will be removed even if your program termi-
nates abnormally.

The pair of functions in Listing 2.5 demonstrates mkstemp. Used together, these
functions make it easy to write a memory buffer to a temporary file (so that memory
can be freed or reused) and then read it back later.

Listing 2.5 (temp_file.c) Using mkstemp

#include <stdlib.h>
#include <unistd.h>

/* A handle for a temporary file created with write_temp_file. 1In
this implementation, it's just a file descriptor. */
typedef int temp_file_handle;

/* Writes LENGTH bytes from BUFFER into a temporary file. The
temporary file is immediately unlinked. Returns a handle to the
temporary file. */

temp_file_handle write_temp_file (char* buffer, size_t length)
{
/* Create the filename and file. The XXXXXX will be replaced with
characters that make the filename unique. */
char temp_filename[] = "/tmp/temp_file.XXXXXX";
int fd = mkstemp (temp_filename);
/* Unlink the file immediately, so that it will be removed when the
file descriptor is closed. */
unlink (temp_filename);
/* Write the number of bytes to the file first. */
write (fd, &length, sizeof (length));
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/* Now write the data itself. */

write (fd, buffer, length);

/* Use the file descriptor as the handle for the temporary file. */
return fd;

}

/* Reads the contents of a temporary file TEMP_FILE created with
write_temp_file. The return value is a newly allocated buffer of
those contents, which the caller must deallocate with free.
*LENGTH is set to the size of the contents, in bytes. The
temporary file is removed. */

char* read_temp_file (temp_file_handle temp_file, size_t* length)
{
char* buffer;
/* The TEMP_FILE handle is a file descriptor to the temporary file. */
int fd = temp_file;
/* Rewind to the beginning of the file. */
lseek (fd, 0, SEEK_SET);
/* Read the size of the data in the temporary file. */
read (fd, length, sizeof (*length));
/* Allocate a buffer and read the data. */
buffer = (char*) malloc (*length);
read (fd, buffer, *length);
/* Close the file descriptor, which will cause the temporary file to
go away. */
close (fd);
return buffer;

Using tmpfile

If you are using the C library I/O functions and don’t need to pass the temporary file
to another program, you can use the tmpfile function. This creates and opens a tem-
porary file, and returns a file pointer to it. The temporary file is already unlinked, as in
the previous example, so it is deleted automatically when the file pointer is closed
(with fclose) or when the program terminates.

GNU/Linux provides several other functions for generating temporary files and tem-
porary filenames, including mktemp, tmpnam, and tempnam. Don’t use these functions,

though, because they suffer from the reliability and security problems already mentioned.
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2.2 Coding Defensively

Writing programs that run correctly under “normal” use is hard; writing programs that
behave gracefully in failure situations is harder. This section demonstrates some coding

techniques for finding bugs early and for detecting and recovering from problems in a

running program.

The code samples presented later in this book deliberately skip extensive error
checking and recovery code because this would obscure the basic functionality being
presented. However, the final example in Chapter 11,“A Sample GNU/Linux
Application,” comes back to demonstrating how to use these techniques to write
robust programs.

2.2.1 Using assert

A good objective to keep in mind when coding application programs is that bugs or
unexpected errors should cause the program to fail dramatically, as early as possible.
This will help you find bugs earlier in the development and testing cycles. Failures that
don’t exhibit themselves dramatically are often missed and don’t show up until the
application is in users’ hands.

One of the simplest methods to check for unexpected conditions is the standard C
assert macro. The argument to this macro is a Boolean expression. The program is
terminated if the expression evaluates to false, after printing an error message contain-
ing the source file and line number and the text of the expression. The assert macro
is very useful for a wide variety of consistency checks internal to a program. For
instance, use assert to test the validity of function arguments, to test preconditions
and postconditions of function calls (and method calls, in C++), and to test for unex-
pected return values.

Each use of assert serves not only as a runtime check of a condition, but also as
documentation about the program’s operation within the source code. If your program
contains an assert (condition) that says to someone reading your source code that
condition should always be true at that point in the program, and if condition is not
true, it’s probably a bug in the program.

For performance-critical code, runtime checks such as uses of assert can impose a
significant performance penalty. In these cases, you can compile your code with the
NDEBUG macro defined, by using the -DNDEBUG flag on your compiler command line.
‘With NDEBUG set, appearances of the assert macro will be preprocessed away. It’s a
good idea to do this only when necessary for performance reasons, though, and only
with performance-critical source files.

Because it is possible to preprocess assert macros away, be careful that any expres-
sion you use with assert has no side effects. Specifically, you shouldn’t call functions
inside assert expressions, assign variables, or use modifying operators such as ++.



2.2 Coding Defensively

Suppose, for example, that you call a function, do_something, repeatedly in a loop.
The do_something function returns zero on success and nonzero on failure, but you
don’t expect it ever to fail in your program.You might be tempted to write:
for (1 =0; i < 100; ++i)
assert (do_something () == 0);

However, you might find that this runtime check imposes too large a performance
penalty and decide later to recompile with NDEBUG defined. This will remove the
assert call entirely, so the expression will never be evaluated and do_something will
never be called. You should write this instead:
for (i = 0; i < 100; ++i) {
int status = do_something ();
assert (status == 0);

}

Another thing to bear in mind is that you should not use assert to test for invalid
user input. Users don't like it when applications simply crash with a cryptic error mes-
sage, even in response to invalid input.You should still always check for invalid input
and produce sensible error messages in response input. Use assert for internal run-
time checks only.

Some good places to use assert are these:

= Check against null pointers, for instance, as invalid function arguments. The error
message generated by {assert (pointer != NULL)},

Assertion 'pointer != ((void *)0)' failed.

is more informative than the error message that would result if your program
dereferenced a null pointer:

Segmentation fault (core dumped)

= Check conditions on function parameter values. For instance, if a function
should be called only with a positive value for parameter foo, use this at the
beginning of the function body:

assert (foo > 0);

This will help you detect misuses of the function, and it also makes it very clear
to someone reading the function’s source code that there is a restriction on the
parameter’s value.

Don’t hold back; use assert liberally throughout your programs.
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2.2.2 System Call Failures

Most of us were originally taught how to write programs that execute to completion
along a well-defined path. We divide the program into tasks and subtasks, and each
function completes a task by invoking other functions to perform corresponding sub-
tasks. Given appropriate inputs, we expect a function to produce the correct output
and side effects.

The realities of computer hardware and software intrude into this idealized dream.
Computers have limited resources; hardware fails; many programs execute at the same
time; users and programmers make mistakes. It’s often at the boundary between the
application and the operating system that these realities exhibit themselves. Therefore,
when using system calls to access system resources, to perform I/O, or for other pur-
poses, it’s important to understand not only what happens when the call succeeds, but
also how and when the call can fail.

System calls can fail in many ways. For example:

= The system can run out of resources (or the program can exceed the resource
limits enforced by the system of a single program). For example, the program
might try to allocate too much memory, to write too much to a disk, or to open
too many files at the same time.

= Linux may block a certain system call when a program attempts to perform an
operation for which it does not have permission. For example, a program might
attempt to write to a file marked read-only, to access the memory of another
process, or to kill another user’s program.

= The arguments to a system call might be invalid, either because the user pro-
vided invalid input or because of a program bug. For instance, the program
might pass an invalid memory address or an invalid file descriptor to a system
call. Or, a program might attempt to open a directory as an ordinary file, or
might pass the name of an ordinary file to a system call that expects a directory.

= A system call can fail for reasons external to a program.This happens most often
when a system call accesses a hardware device. The device might be faulty or
might not support a particular operation, or perhaps a disk is not inserted in the
drive.

= A system call can sometimes be interrupted by an external event, such as the
delivery of a signal. This might not indicate outright failure, but it is the respon-
sibility of the calling program to restart the system call, if desired.

In a well-written program that makes extensive use of system calls, it is often the case
that more code is devoted to detecting and handling errors and other exceptional cir-
cumstances than to the main work of the program.
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2.2.3 Error Codes from System Calls

A majority of system calls return zero if the operation succeeds, or a nonzero value if
the operation fails. (Many, though, have different return value conventions; for
instance, malloc returns a null pointer to indicate failure. Always read the man page
carefully when using a system call.) Although this information may be enough to
determine whether the program should continue execution as usual, it probably does
not provide enough information for a sensible recovery from errors.

Most system calls use a special variable named errno to store additional information
in case of failure.> When a call fails, the system sets errno to a value indicating what
went wrong. Because all system calls use the same errno variable to store error infor-
mation, you should copy the value into another variable immediately after the failed
call. The value of errno will be overwritten the next time you make a system call.

Error values are integers; possible values are given by preprocessor macros, by con-
vention named in all capitals and starting with “E”—for example, EACCES and EINVAL.
Always use these macros to refer to errno values rather than integer values. Include the
<errno.h> header if you use errno values.

GNU/Linux provides a convenient function, strerror, that returns a character
string description of an errno error code, suitable for use in error messages. Include
<string.h> if you use strerror.

GNU/Linux also provides perror, which prints the error description directly to
the stderr stream. Pass to perror a character string prefix to print before the error
description, which should usually include the name of the function that failed. Include
<stdio.h> if you use perror.

This code fragment attempts to open a file; if the open fails, it prints an error mes-
sage and exits the program. Note that the open call returns an open file descriptor if
the open operation succeeds, or —1 if the operation fails.

fd = open ("inputfile.txt", O_RDONLY);

if (fd == -1) {

/* The open failed. Print an error message and exit. */
fprintf (stderr, "error opening file: %s\n", strerror (errno));
exit (1);

}

Depending on your program and the nature of the system call, the appropriate action
in case of failure might be to print an error message, to cancel an operation, to abort
the program, to try again, or even to ignore the error. It’s important, though, to
include logic that handles all possible failure modes in some way or another.

2. Actually, for reasons of thread safety, errno is implemented as a macro, but it is used like a
global variable.
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One possible error code that you should be on the watch for, especially with I/O
functions, is EINTR. Some functions, such as read, select, and sleep, can take signifi-
cant time to execute. These are considered blocking functions because program execu-
tion is blocked until the call is completed. However, if the program receives a signal
while blocked in one of these calls, the call will return without completing the opera-
tion. In this case, errno is set to EINTR. Usually, you’ll want to retry the system call in
this case.

Here’s a code fragment that uses the chown call to change the owner of a file given
by path to the user by user_id. If the call fails, the program takes action depending on
the value of errno. Notice that when we detect what’s probably a bug in the program,
we exit using abort or assert, which cause a core file to be generated. This can be
useful for post-mortem debugging. For other unrecoverable errors, such as out-of-
memory conditions, we exit using exit and a nonzero exit value instead because a
core file wouldn’t be very useful.

rval = chown (path, user_id, -1);

if (rval !=0) {

/* Save errno because it's clobbered by the next system call. */

int error_code = errno;

/* The operation didn't succeed; chown should return -1 on error. */
assert (rval == -1);

/* Check the value of errno, and take appropriate action. */

switch (error_code) {

case EPERM: /* Permission denied. */

case EROFS: /* PATH is on a read-only file system. */
case ENAMETOOLONG: /* PATH is too long. */

case ENOENT: /* PATH does not exit. */

case ENOTDIR: /* A component of PATH is not a directory. */
case EACCES: /* A component of PATH is not accessible. */

/* Something's wrong with the file. Print an error message. */
fprintf (stderr, "error changing ownership of %s: %s\n",
path, strerror (error_code));
/* Don't end the program; perhaps give the user a chance to
choose another file... */
break;

case EFAULT:
/* PATH contains an invalid memory address. This is probably a bug. */
abort ();

case ENOMEM:
/* Ran out of kernel memory. */
fprintf (stderr, "%s\n", strerror (error_code));
exit (1);

default:
/* Some other, unexpected, error code. We've tried to handle all
possible error codes; if we've missed one, that's a bug! */
abort ();
b



2.2 Coding Defensively

You could simply have used this code, which behaves the same way if the call succeeds:

rval = chown (path, user_id, -1);
assert (rval == 0);

But if the call fails, this alternative makes no effort to report, handle, or recover from
errors.

Whether you use the first form, the second form, or something in between
depends on the error detection and recovery requirements for your program.

2.2.4 Errors and Resource Allocation

Often, when a system call fails, it’s appropriate to cancel the current operation but not
to terminate the program because it may be possible to recover from the error. One
way to do this is to return from the current function, passing a return code to the
caller indicating the error.

If you decide to return from the middle of a function, it’s important to make sure
that any resources successfully allocated previously in the function are first deallocated.
These resources can include memory, file descriptors, file pointers, temporary files,
synchronization objects, and so on. Otherwise, if your program continues running, the
resources allocated before the failure occurred will be leaked.

Consider, for example, a function that reads from a file into a buffer. The function
might follow these steps:

1. Allocate the bufter.

2. Open the file.

3. Read from the file into the bufter.

4. Close the file.

5. Return the buffer.
If the file doesn’t exist, Step 2 will fail. An appropriate course of action might be to
return NULL from the function. However, if the buffer has already been allocated in
Step 1, there is a risk of leaking that memory. You must remember to deallocate the

bufter somewhere along any flow of control from which you don’t return. If Step 3

fails, not only must you deallocate the buffer before returning, but you also must close
the file.
Listing 2.6 shows an example of how you might write this function.

Listing 2.6  (readfile.c) Freeing Resources During Abnormal Conditions

#include <fcntl.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

continues
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Listing 2.6 Continued

char* read_from_file (const char* filename, size_t length)
{

char* buffer;

int fd;

ssize_t bytes_read;

/* Allocate the buffer. */
buffer = (char*) malloc (length);
if (buffer == NULL)
return NULL;
/* Open the file. */
fd = open (filename, O _RDONLY);
if (fd == -1) {
/* open failed. Deallocate buffer before returning. */
free (buffer);
return NULL;
}
/* Read the data. */
bytes_read = read (fd, buffer, length);
if (bytes_read != length) {
/* read failed. Deallocate buffer and close fd before returning. */
free (buffer);
close (fd);
return NULL;
}
/* Everything's fine. Close the file and return the buffer. */
close (fd);
return buffer;

Linux cleans up allocated memory, open files, and most other resources when a pro-
gram terminates, so it’s not necessary to deallocate buffers and close files before calling
exit.You might need to manually free other shared resources, however, such as tempo-
rary files and shared memory, which can potentially outlive a program.

2.3 Writing and Using Libraries

Virtually all programs are linked against one or more libraries. Any program that uses a
C function (such as printf or malloc) will be linked against the C runtime library. If
your program has a graphical user interface (GUI), it will be linked against windowing
libraries. If your program uses a database, the database provider will give you libraries
that you can use to access the database conveniently.
In each of these cases, you must decide whether to link the library statically or

dynamically. If you choose to link statically, your programs will be bigger and harder to
upgrade, but probably easier to deploy. If you link dynamically, your programs will be
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smaller, easier to upgrade, but harder to deploy. This section explains how to link both
statically and dynamically, examines the trade-ofts in more detail, and gives some “rules
of thumb” for deciding which kind of linking is better for you.

2.3.1 Archives

An archive (or static library) is simply a collection of object files stored as a single file.
(An archive is roughly the equivalent of a Windows .LIB file.) When you provide an
archive to the linker, the linker searches the archive for the object files it needs,
extracts them, and links them into your program much as if you had provided those
object files directly.

You can create an archive using the ar command. Archive files traditionally use a .a
extension rather than the .o extension used by ordinary object files. Here’s how you
would combine test1.o and test2.o0 into a single libtest.a archive:

% ar cr libtest.a testl.o test2.o0

The cr flags tell ar to create the archive.” Now you can link with this archive using
the -1test option with gcc or g++, as described in Section 1.2.2, “Linking Object
Files,” in Chapter 1, “Getting Started.”

When the linker encounters an archive on the command line, it searches the
archive for all definitions of symbols (functions or variables) that are referenced from
the object files that it has already processed but not yet defined. The object files that
define those symbols are extracted from the archive and included in the final exe-
cutable. Because the linker searches the archive when it is encountered on the com-
mand line, it usually makes sense to put archives at the end of the command line. For
example, suppose that test.c contains the code in Listing 2.7 and app.c contains the
code in Listing 2.8.

Listing 2.7  (test.c) Library Contents

int £ ()
{

return 3;

}

Listing 2.8  (app.c) A Program That Uses Library Functions

int main ()
{
return f ();

}

3.You can use other flags to remove a file from an archive or to perform other operations on
the archive. These operations are rarely used but are documented on the ar man page.
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Now suppose that test.o is combined with some other object files to produce the
libtest.a archive. The following command line will not work:

% gcc -0 app -L. -ltest app.o

app.o: In function 'main':

app.o(.text+0x4): undefined reference to 'f'

collect2: 1d returned 1 exit status

The error message indicates that even though libtest.a contains a definition of f, the
linker did not find it. That’s because libtest.a was searched when it was first encoun-
tered, and at that point the linker hadn’t seen any references to f.

On the other hand, if we use this line, no error messages are issued:

% gcc -0 app app.o -L. -ltest

The reason is that the reference to f in app.o causes the linker to include the test.o
object file from the libtest.a archive.

2.3.2 Shared Libraries

A shared library (also known as a shared object, or as a dynamically linked library) is
similar to a archive in that it is a grouping of object files. However, there are many
important differences. The most fundamental difference is that when a shared library is
linked into a program, the final executable does not actually contain the code that is
present in the shared library. Instead, the executable merely contains a reference to the
shared library. If several programs on the system are linked against the same shared
library, they will all reference the library, but none will actually be included. Thus, the
library is “shared” among all the programs that link with it.

A second important difference is that a shared library is not merely a collection of
object files, out of which the linker chooses those that are needed to satisty undefined
references. Instead, the object files that compose the shared library are combined into a
single object file so that a program that links against a shared library always includes all
of the code in the library, rather than just those portions that are needed.

To create a shared library, you must compile the objects that will make up the
library using the -fPIC option to the compiler, like this:

% gcc -c¢ -fPIC testl.c

The -fPIC option tells the compiler that you are going to be using test.o as part of a
shared object.

Position-Independent Code (PIC)

PIC stands for position-independent code. The functions in a shared library may be loaded at different
addresses in different programs, so the code in the shared object must not depend on the address (or
position) at which it is loaded. This consideration has no impact on you, as the programmer, except that
you must remember to use the - fPIC flag when compiling code that will be used in a shared library.
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Then you combine the object files into a shared library, like this:
% gcc -shared -fPIC -o libtest.so test1.o test2.o

The -shared option tells the linker to produce a shared library rather than an ordinary
executable. Shared libraries use the extension .so, which stands for shared object. Like
static archives, the name always begins with 1ib to indicate that the file is a library.

Linking with a shared library is just like linking with a static archive. For example,
the following line will link with libtest.so if it is in the current directory, or one of
the standard library search directories on the system:

% gcc -0 app app.o -L. -ltest

Suppose that both libtest.a and libtest.so are available. Then the linker must
choose one of the libraries and not the other. The linker searches each directory (first
those specified with -L options, and then those in the standard directories). When the
linker finds a directory that contains either libtest.a or libtest.so, the linker stops
search directories. If only one of the two variants is present in the directory, the linker
chooses that variant. Otherwise, the linker chooses the shared library version, unless
you explicitly instruct it otherwise.You can use the -static option to demand static
archives. For example, the following line will use the libtest.a archive, even if the
libtest.so shared library is also available:

% gcc -static -o app app.o -L. -ltest

The 1dd command displays the shared libraries that are linked into an executable.
These libraries need to be available when the executable is run. Note that 1dd will list
an additional library called 1d-1inux.so, which is a part of GNU/Linux’s dynamic
linking mechanism.

Using LD_LIBRARY PATH

When you link a program with a shared library, the linker does not put the full path
to the shared library in the resulting executable. Instead, it places only the name of the
shared library. When the program is actually run, the system searches for the shared
library and loads it. The system searches only /1ib and /usr/1ib, by default. If a shared
library that is linked into your program is installed outside those directories, it will not
be found, and the system will refuse to run the program.

One solution to this problem is to use the -W1, -rpath option when linking the
program. Suppose that you use this:

% gcc -0 app app.o -L. -ltest -Wl,-rpath,/usr/local/lib

Then, when app is run, the system will search /usr/local/lib for any required shared
libraries.

39



40  Chapter 2 Writing Good GNU/Linux Software

Another solution to this problem is to set the LD_LIBRARY_PATH environment
variable when running the program. Like the PATH environment variable,
LD_LIBRARY_PATH is a colon-separated list of directories. For example, if
LD_LIBRARY_PATH is /usr/local/lib:/opt/lib, then /usr/local/lib and /opt/1lib
will be searched before the standard /1ib and /usr/lib directories.You should also
note that if you have LD_LIBRARY_PATH, the linker will search the directories given
there in addition to the directories given with the -L option when it is building an
executable.’

2.3.3 Standard Libraries

Even if you didn’t specify any libraries when you linked your program, it almost cer-
tainly uses a shared library. That’s because GCC automatically links in the standard C
library, libc, for you. The standard C library math functions are not included in libc;
instead, they’re in a separate library, 1ibm, which you need to specify explicitly. For
example, to compile and link a program compute.c which uses trigonometric func-
tions such as sin and cos, you must invoke this code:

% gcc -0 compute compute.c -1m

If you write a C++ program and link it using the c++ or g++ commands, you’ll also
get the standard C++ library, libstdc++, automatically.

2.3.4 Library Dependencies

One library will often depend on another library. For example, many GNU/Linux
systems include libtiff, a library that contains functions for reading and writing
image files in the TIFF format. This library, in turn, uses the libraries 1ibjpeg (JPEG
image routines) and libz (compression routines).

Listing 2.9 shows a very small program that uses libtiff to open a TIFF image file.

Listing 2.9 (tifftest.c) Using libtiff

#include <stdio.h>
#include <tiffio.h>

int main (int argc, char** argv)
{
TIFF* tiff;
tiff = TIFFOpen (argv[1], "r");
TIFFClose (tiff);
return 0;

4.You might see a reference to LD_RUN_PATH in some online documentation. Don’t believe
what you read; this variable does not actually do anything under GNU/Linux.
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Save this source file as tifftest.c.To compile this program and link with libtiff,
specify -1tiff on your link line:
% gcc -0 tifftest tifftest.c -1tiff

By default, this will pick up the shared-library version of 1ibtiff, found at
/usr/1lib/libtiff.so. Because libtiff uses libjpeg and 1libz, the shared-library
versions of these two are also drawn in (a shared library can point to other shared
libraries that it depends on). To verify this, use the 1dd command:

% ldd tifftest
libtiff.s0.3 => /usr/lib/libtiff.s0.3 (0x4001d000)
libc.so0.6 => /lib/libc.s0.6 (0x40060000)
libjpeg.s0.62 => Jusr/lib/libjpeg.s0.62 (0x40155000)
libz.so.1 => Jusr/lib/libz.so0.1 (0x40174000)
/1lib/1d-1linux.s0.2 => /lib/1ld-1linux.so0.2 (0x40000000)

Static libraries, on the other hand, cannot point to other libraries. If decide to link

with the static version of libtiff by specifying -static on your command line, you

will encounter unresolved symbols:
% gcc -static -o tifftest tifftest.c -1tiff
fusr/bin/../1lib/1libtiff.a(tif_jpeg.o): In function 'TIFFjpeg_error_exit':
tif_jpeg.o(.text+0x2a): undefined reference to 'jpeg_abort'
fusr/bin/../1lib/libtiff.a(tif_jpeg.o): In function 'TIFFjpeg_create_compress':
tif_jpeg.o(.text+0x8d): undefined reference to 'jpeg_std_error'
tif_jpeg.o(.text+0xcf): undefined reference to 'jpeg CreateCompress'

To link this program statically, you must specify the other two libraries yourself:
% gcc -static -o tifftest tifftest.c -1tiff -ljpeg -1z

Occasionally, two libraries will be mutually dependent. In other words, the first archive
will reference symbols defined in the second archive, and vice versa. This situation
generally arises out of poor design, but it does occasionally arise. In this case, you can
provide a single library multiple times on the command line. The linker will research
the library each time it occurs. For example, this line will cause 1ibfoo.a to be
searched multiple times:

% gcc -0 app app.o -1foo -lbar -1foo

So, even if 1libfoo.a references symbols in libbar.a, and vice versa, the program will
link successfully.

2.3.5 Pros and Cons

Now that you know all about static archives and shared libraries, you’re probably
wondering which to use. There are a few major considerations to keep in mind.
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One major advantage of a shared library is that it saves space on the system where
the program is installed. If you are installing 10 programs, and they all make use of the
same shared library, then you save a lot of space by using a shared library. If you used a
static archive instead, the archive is included in all 10 programs. So, using shared
libraries saves disk space. It also reduces download times if your program is being
downloaded from the Web.

A related advantage to shared libraries is that users can upgrade the libraries with-
out upgrading all the programs that depend on them. For example, suppose that you
produce a shared library that manages HTTP connections. Many programs might
depend on this library. If you find a bug in this library, you can upgrade the library.
Instantly, all the programs that depend on the library will be fixed; you don’t have to
relink all the programs the way you do with a static archive.

Those advantages might make you think that you should always use shared
libraries. However, substantial reasons exist to use static archives instead. The fact that
an upgrade to a shared library affects all programs that depend on it can be a disadvan-
tage. For example, if youre developing mission-critical software, you might rather link
to a static archive so that an upgrade to shared libraries on the system won'’t affect
your program. (Otherwise, users might upgrade the shared library, thereby breaking
your program, and then call your customer support line, blaming you!)

If youre not going to be able to install your libraries in /1ib or /usr/lib, you
should definitely think twice about using a shared library. (You won’t be able to install
your libraries in those directories if you expect users to install your software without
administrator privileges.) In particular, the -W1, -rpath trick won’t work if you don’t
know where the libraries are going to end up. And asking your users to set
LD_LIBRARY_PATH means an extra step for them. Because each user has to do this
individually, this is a substantial additional burden.

You’ll have to weigh these advantages and disadvantages for every program you
distribute.

2.3.6 Dynamic Loading and Unloading

Sometimes you might want to load some code at run time without explicitly linking
in that code. For example, consider an application that supports “plug-in” modules,
such as a Web browser. The browser allows third-party developers to create plug-ins to
provide additional functionality. The third-party developers create shared libraries and
place them in a known location. The Web browser then automatically loads the code
in these libraries.

This functionality is available under Linux by using the dlopen function. You could
open a shared library named libtest.so by calling dlopen like this:

dlopen ("libtest.so", RTLD_LAZY)
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(The second parameter is a flag that indicates how to bind symbols in the shared
library. You can consult the online man pages for dlopen if you want more informa-
tion, but RTLD_LAZY is usually the setting that you want.) To use dynamic loading func-
tions, include the <d1fcn.h> header file and link with the -1d1 option to pick up the
1ibdl library.

The return value from this function is a void * that is used as a handle for the
shared library.You can pass this value to the dlsym function to obtain the address of a
function that has been loaded with the shared library. For example, if libtest.so
defines a function named my_function, you could call it like this:

void* handle = dlopen ("libtest.so", RTLD_LAZY);

void (*test)() = dlsym (handle, "my_function");

(*test)();
dlclose (handle);

The dlsym system call can also be used to obtain a pointer to a static variable in the
shared library.

Both dlopen and dlsym return NULL if they do not succeed. In that event, you
can call dlerror (with no parameters) to obtain a human-readable error message
describing the problem.

The dlclose function unloads the shared library. Technically, dlopen actually loads
the library only if it is not already loaded. If the library has already been loaded,
dlopen simply increments the library reference count. Similarly, dlclose decrements
the reference count and then unloads the library only if the reference count has
reached zero.

If youre writing the code in your shared library in C++, you will probably want
to declare those functions and variables that you plan to access elsewhere with the
extern "C" linkage specifier. For instance, if the C++ function my_function is in a
shared library and you want to access it with dlsym, you should declare it like this:

extern "C" void foo ();

This prevents the C++ compiler from mangling the function name, which would
change the function’s name from foo to a different, funny-looking name that encodes
extra information about the function. A C compiler will not mangle names; it will use
whichever name you give to your function or variable.
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Processes

A RUNNING INSTANCE OF A PROGRAM IS CALLED A PROCESS. If you have two
terminal windows showing on your screen, then you are probably running the

same terminal program twice—you have two terminal processes. Each terminal
window is probably running a shell; each running shell is another process. When you
invoke a command from a shell, the corresponding program is executed in a new
process; the shell process resumes when that process completes.

Advanced programmers often use multiple cooperating processes in a single appli-
cation to enable the application to do more than one thing at once, to increase
application robustness, and to make use of already-existing programs.

Most of the process manipulation functions described in this chapter are similar to
those on other UNIX systems. Most are declared in the header file <unistd.h>; check
the man page for each function to be sure.

3.1 Looking at Processes

Even as you sit down at your computer, there are processes running. Every executing
program uses one or more processes. Let’s start by taking a look at the processes
already on your computer.
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3.1.1 Process IDs

Each process in a Linux system is identified by its unique process ID, sometimes
referred to as pid. Process IDs are 16-bit numbers that are assigned sequentially by
Linux as new processes are created.

Every process also has a parent process (except the special init process, described in
Section 3.4.3,“Zombie Processes”). Thus, you can think of the processes on a Linux
system as arranged in a tree, with the init process at its root. The parent process ID, or
ppid, 1s simply the process ID of the process’s parent.

When referring to process IDs in a C or C++ program, always use the pid_t
typedef, which is defined in <sys/types.h>. A program can obtain the process ID of
the process it’s running in with the getpid() system call, and it can obtain the process
ID of its parent process with the getppid() system call. For instance, the program in
Listing 3.1 prints its process ID and its parent’s process ID.

Listing 3.1  (print-pid.c) Printing the Process ID

#include <stdio.h>
#include <unistd.h>

int main ()

{
printf ("The process ID is %d\n", (int) getpid ());
printf ("The parent process ID is %d\n", (int) getppid ());
return 0

Observe that if you invoke this program several times, a different process ID is
reported because each invocation is in a new process. However, if you invoke it every
time from the same shell, the parent process ID (that is, the process ID of the shell
process) is the same.

3.1.2 Viewing Active Processes

The ps command displays the processes that are running on your system. The
GNU/Linux version of ps has lots of options because it tries to be compatible with
versions of ps on several other UNIX variants. These options control which processes
are listed and what information about each is shown.

By default, invoking ps displays the processes controlled by the terminal or terminal
window in which ps is invoked. For example:

% ps

PID TTY TIME CMD

21693 pts/8 00:00:00 bash
21694 pts/8 00:00:00 ps
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This invocation of ps shows two processes. The first, bash, is the shell running on this
terminal. The second is the running instance of the ps program itself. The first col-
umn, labeled PID, displays the process ID of each.

For a more detailed look at what’s running on your GNU/Linux system, invoke
this:

o

% ps -e -0 pid,ppid,command

The -e option instructs ps to display all processes running on the system. The

-0 pid,ppid,command option tells ps what information to show about each process—
in this case, the process ID, the parent process ID, and the command running in this
process.

ps Output Formats

With the -0 option to the ps command, you specify the information about processes that you want in
the output as a comma-separated list. For example, ps -0 pid,user,start_time,command displays
the process ID, the name of the user owning the process, the wall clock time at which the process
started, and the command running in the process. See the man page for ps for the full list of field codes.
You can use the - (full listing), -1 (long listing), or - j (jobs listing) options instead to get three differ-
ent preset listing formats.

Here are the first few lines and last few lines of output from this command on my
system. You may see different output, depending on what’s running on your system.

% ps -e -0 pid,ppid,command
PID PPID COMMAND

1 0 init [5]
2 1 [kflushd]
3 1 [kupdate]

21725 21693 xterm

21727 21725 bash

21728 21727 ps -e -0 pid,ppid,command
Note that the parent process ID of the ps command, 21727, is the process ID of bash,
the shell from which I invoked ps. The parent process ID of bash is in turn 21725, the
process ID of the xterm program in which the shell is running.

3.1.3 Killing a Process

You can kill a running process with the kill command. Simply specify on the com-
mand line the process ID of the process to be killed.

The kill command works by sending the process a SIGTERM, or termination,
signal.' This causes the process to terminate, unless the executing program explicitly
handles or masks the SIGTERM signal. Signals are described in Section 3.3, “Signals.”

1.You can also use the kill command to send other signals to a process. This is described in

Section 3.4, “Process Termination.”
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3.2 Creating Processes

Two common techniques are used for creating a new process. The first is relatively
simple but should be used sparingly because it is inefficient and has considerably
security risks. The second technique is more complex but provides greater flexibility,
speed, and security.

3.2.1 Using system

The system function in the standard C library provides an easy way to execute a
command from within a program, much as if the command had been typed into a
shell. In fact, system creates a subprocess running the standard Bourne shell (/bin/sh)
and hands the command to that shell for execution. For example, this program in
Listing 3.2 invokes the 1s command to display the contents of the root directory, as if
you typed 1s -1 / into a shell.

Listing 3.2 (system.c) Using the system Call

#include <stdlib.h>

int main ()

{
int return_value;
return_value = system ("1ls -1 /");
return return_value;

}

The system function returns the exit status of the shell command. If the shell itself
cannot be run, system returns 127; if another error occurs, system returns —1.

Because the system function uses a shell to invoke your command, it’s subject to
the features, limitations, and security flaws of the system’s shell. You can’t rely on the
availability of any particular version of the Bourne shell. On many UNIX systems,
/bin/sh is a symbolic link to another shell. For instance, on most GNU/Linux sys-
tems, /bin/sh points to bash (the Bourne-Again SHell), and different GNU/Linux
distributions use different versions of bash. Invoking a program with root privilege
with the system function, for instance, can have different results on different
GNU/Linux systems. Therefore, it’s preferable to use the fork and exec method for
creating processes.

3.2.2 Using fork and exec

The DOS and Windows API contains the spawn family of functions. These functions
take as an argument the name of a program to run and create a new process instance
of that program. Linux doesn’t contain a single function that does all this in one step.
Instead, Linux provides one function, fork, that makes a child process that is an exact
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copy of its parent process. Linux provides another set of functions, the exec family, that
causes a particular process to cease being an instance of one program and to instead
become an instance of another program.To spawn a new process, you first use fork to
make a copy of the current process. Then you use exec to transform one of these
processes into an instance of the program you want to spawn.

Calling fork

When a program calls fork, a duplicate process, called the child process, is created. The
parent process continues executing the program from the point that fork was called.
The child process, too, executes the same program from the same place.

So how do the two processes differ? First, the child process is a new process and
therefore has a new process ID, distinct from its parent’s process ID. One way for a
program to distinguish whether it’s in the parent process or the child process is to call
getpid. However, the fork function provides different return values to the parent and
child processes—one process “goes in” to the fork call, and two processes “come out,”
with different return values. The return value in the parent process is the process ID of
the child. The return value in the child process is zero. Because no process ever has a
process ID of zero, this makes it easy for the program whether it is now running as the
parent or the child process.

Listing 3.3 1s an example of using fork to duplicate a program’s process. Note that
the first block of the if statement is executed only in the parent process, while the
else clause is executed in the child process.

Listing 3.3  (fork.c) Using fork to Duplicate a Program’ Process

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main ()

{
pid_t child pid;

printf ("the main program process ID is %d\n", (int) getpid ());

child_pid = fork ();

if (child_pid != 0) {
printf ("this is the parent process, with id %d\n", (int) getpid ());
printf ("the child's process ID is %d\n", (int) child_pid);

}

else
printf ("this is the child process, with id %d\n", (int) getpid ());

return 0;
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Using the exec Family

The exec functions replace the program running in a process with another program.
When a program calls an exec function, that process immediately ceases executing that
program and begins executing a new program from the beginning, assuming that the
exec call doesn’t encounter an error.

Within the exec family, there are functions that vary slightly in their capabilities
and how they are called.

= Functions that contain the letter p in their names (execvp and execlp) accept a
program name and search for a program by that name in the current execution
path; functions that don’t contain the p must be given the full path of the pro-
gram to be executed.

= Functions that contain the letter v in their names (execv, execvp, and execve)
accept the argument list for the new program as a NULL-terminated array of
pointers to strings. Functions that contain the letter / (execl, execlp, and
execle) accept the argument list using the C language’s varargs mechanism.

= Functions that contain the letter e in their names (execve and execle) accept an
additional argument, an array of environment variables. The argument should be
a NULL-terminated array of pointers to character strings. Each character string
should be of the form “VARIABLE=value”.

Because exec replaces the calling program with another one, it never returns unless an
error occurs.

The argument list passed to the program is analogous to the command-line argu-
ments that you specify to a program when you run it from the shell. They are available
through the argc and argv parameters to main. Remember, when a program is
invoked from the shell, the shell sets the first element of the argument list argv[@]) to
the name of the program, the second element of the argument list (argv[1]) to the
first command-line argument, and so on. When you use an exec function in your pro-
grams, you, too, should pass the name of the function as the first element of the argu-
ment list.

Using fork and exec Together

A common pattern to run a subprogram within a program is first to fork the process
and then exec the subprogram. This allows the calling program to continue execution
in the parent process while the calling program is replaced by the subprogram in the
child process.

The program in Listing 3.4, like Listing 3.2, lists the contents of the root directory
using the 1s command. Unlike the previous example, though, it invokes the 1s com-
mand directly, passing it the command-line arguments -1 and / rather than invoking it
through a shell.
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Listing 3.4  (fork-exec.c) Using fork and exec Together

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Spawn a child process running a new program. PROGRAM is the name

of the program to run; the path will be searched for this program.
ARG_LIST is a NULL-terminated list of character strings to be
passed as the program's argument list. Returns the process ID of
the spawned process. */

int spawn (char* program, char** arg_list)

{

pid_t child pid;

/* Duplicate this process. */

child_pid = fork ();
if (child_pid != 0)

/* This is the parent process. */
return child_pid;

else {

/* Now execute PROGRAM, searching for it in the path. */
execvp (program, arg_list);

/* The execvp function returns only if an error occurs. */
fprintf (stderr, "an error occurred in execvp\n");

abort ();
}
}
int main ()
{

/* The argument list to pass to the "ls" command. */

char* arg_list[] = {

"1s", /* argv[@], the name of the program. */

1,

e

NULL /* The argument list must end with a NULL. */
b

/* Spawn a child process running the "1s" command. Ignore the
returned child process ID. */

spawn ("ls", arg_list);

printf ("done with main program\n");

return 0;
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3.2.3 Process Scheduling

Linux schedules the parent and child processes independently; there’s no guarantee of
which one will run first, or how long it will run before Linux interrupts it and lets the
other process (or some other process on the system) run. In particular, none, part, or all
of the 1s command may run in the child process before the parent completes.” Linux
promises that each process will run eventually—no process will be completely starved
of execution resources.

You may specify that a process is less important—and should be given a lower priority
—by assigning it a higher niceness value. By default, every process has a niceness of zero.
A higher niceness value means that the process is given a lesser execution priority;
conversely, a process with a lower (that is, negative) niceness gets more execution time.

To run a program with a nonzero niceness, use the nice command, specifying the
niceness value with the -n option. For example, this is how you might invoke the
command “sort input.txt > output.txt”, a long sorting operation, with a reduced
priority so that it doesn’t slow down the system too much:

% nice -n 10 sort input.txt > output.txt

You can use the renice command to change the niceness of a running process from
the command line.

To change the niceness of a running process programmatically, use the nice func-
tion. Its argument is an increment value, which is added to the niceness value of the
process that calls it. Remember that a positive value raises the niceness value and thus
reduces the process’s execution priority.

Note that only a process with root privilege can run a process with a negative nice-
ness value or reduce the niceness value of a running process. This means that you may
specify negative values to the nice and renice commands only when logged in as
root, and only a process running as root can pass a negative value to the nice function.
This prevents ordinary users from grabbing execution priority away from others using
the system.

3.3 Signals

Signals are mechanisms for communicating with and manipulating processes in Linux.
The topic of signals is a large one; here we discuss some of the most important signals
and techniques that are used for controlling processes.

A signal is a special message sent to a process. Signals are asynchronous; when a
process receives a signal, it processes the signal immediately, without finishing the cur-
rent function or even the current line of code. There are several dozen different sig-
nals, each with a different meaning. Each signal type is specified by its signal number,
but in programs, you usually refer to a signal by its name. In Linux, these are defined
in /usr/include/bits/signum.h. (You shouldn’t include this header file directly in
your programs; instead, use <signal.h>.)

2. A method for serializing the two processes is presented in Section 3.4.1, “Waiting for

Process Termination.”
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When a process receives a signal, it may do one of several things, depending on the
signal’s disposition. For each signal, there is a default disposition, which determines what
happens to the process if the program does not specify some other behavior. For most
signal types, a program may specify some other behavior—either to ignore the signal
or to call a special signal-handler function to respond to the signal. If a signal handler is
used, the currently executing program is paused, the signal handler is executed, and,
when the signal handler returns, the program resumes.

The Linux system sends signals to processes in response to specific conditions. For
instance, SIGBUS (bus error), SIGSEGV (segmentation violation), and SIGFPE (floating
point exception) may be sent to a process that attempts to perform an illegal opera-
tion. The default disposition for these signals it to terminate the process and produce a
core file.

A process may also send a signal to another process. One common use of this
mechanism is to end another process by sending it a SIGTERM or SIGKILL signal.’
Another common use is to send a command to a running program. Two “user-
defined” signals are reserved for this purpose: SIGUSR1 and SIGUSR2. The SIGHUP signal
is sometimes used for this purpose as well, commonly to wake up an idling program
or cause a program to reread its configuration files.

The sigaction function can be used to set a signal disposition. The first parameter
is the signal number. The next two parameters are pointers to sigaction structures; the
first of these contains the desired disposition for that signal number, while the second
receives the previous disposition. The most important field in the first or second
sigaction structure is sa_handler. It can take one of three values:

= SIG_DFL, which specifies the default disposition for the signal.
= SIG_IGN, which specifies that the signal should be ignored.

= A pointer to a signal-handler function. The function should take one parameter,
the signal number, and return void.

Because signals are asynchronous, the main program may be in a very fragile state
when a signal is processed and thus while a signal handler function executes.
Therefore, you should avoid performing any I/O operations or calling most library
and system functions from signal handlers.

A signal handler should perform the minimum work necessary to respond to the
signal, and then return control to the main program (or terminate the program). In
most cases, this consists simply of recording the fact that a signal occurred. The main
program then checks periodically whether a signal has occurred and reacts accordingly.

It is possible for a signal handler to be interrupted by the delivery of another signal.
While this may sound like a rare occurrence, if it does occur, it will be very difficult to
diagnose and debug the problem. (This is an example of a race condition, discussed in
Chapter 4, “Threads,” Section 4.4, “Synchronization and Critical Sections.”) Therefore,
you should be very careful about what your program does in a signal handler.

3.What’ the difference? The SIGTERM signal asks a process to terminate; the process may
ignore the request by masking or ignoring the signal. The SIGKILL signal always kills the process
immediately because the process may not mask or ignore SIGKILL.
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Even assigning a value to a global variable can be dangerous because the assignment
may actually be carried out in two or more machine instructions, and a second signal
may occur between them, leaving the variable in a corrupted state. If you use a global
variable to flag a signal from a signal-handler function, it should be of the special type
sig_atomic_t. Linux guarantees that assignments to variables of this type are per-
formed in a single instruction and therefore cannot be interrupted midway. In Linux,
sig_atomic_t is an ordinary int;in fact, assignments to integer types the size of int or
smaller, or to pointers, are atomic. If you want to write a program that’s portable to
any standard UNIX system, though, use sig_atomic_t for these global variables.

This program skeleton in Listing 3.5, for instance, uses a signal-handler function to
count the number of times that the program receives SIGUSR1, one of the signals
reserved for application use.

Listing 3.5  (sigusrl.c) Using a Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

sig_atomic_t sigusri_count = 0;

void handler (int signal_number)
{
++sigusri_count;

}

int main ()

{
struct sigaction sa;
memset (&sa, 0, sizeof (sa));
sa.sa_handler = &handler;
sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */
[* o0 %/

printf ("SIGUSR1 was raised %d times\n", sigusri_count);
return 0;
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3.4 Process Termination

Normally, a process terminates in one of two ways. Either the executing program calls
the exit function, or the program’s main function returns. Each process has an exit
code: a number that the process returns to its parent. The exit code is the argument
passed to the exit function, or the value returned from main.

A process may also terminate abnormally, in response to a signal. For instance, the
SIGBUS, SIGSEGV, and SIGFPE signals mentioned previously cause the process to termi-
nate. Other signals are used to terminate a process explicitly. The SIGINT signal is sent
to a process when the user attempts to end it by typing Ctrl+C in its terminal. The
SIGTERM signal is sent by the kill command. The default disposition for both of these
is to terminate the process. By calling the abort function, a process sends itself the
SIGABRT signal, which terminates the process and produces a core file. The most pow-
erful termination signal is SIGKILL, which ends a process immediately and cannot be
blocked or handled by a program.

Any of these signals can be sent using the kill command by specifying an extra
command-line flag; for instance, to end a troublesome process by sending it a SIGKILL,
invoke the following, where pid is its process ID:

% kill -KILL pid

To send a signal from a program, use the kill function. The first parameter is the tar-
get process ID. The second parameter is the signal number; use SIGTERM to simulate the
default behavior of the kill command. For instance, where child pid contains the
process ID of the child process, you can use the kill function to terminate a child
process from the parent by calling it like this:

kill (child_pid, SIGTERM);

Include the <sys/types.h> and <signal.h> headers if you use the kill function.

By convention, the exit code is used to indicate whether the program executed
correctly. An exit code of zero indicates correct execution, while a nonzero exit code
indicates that an error occurred. In the latter case, the particular value returned may
give some indication of the nature of the error. It’s a good idea to stick with this con-
vention in your programs because other components of the GNU/Linux system
assume this behavior. For instance, shells assume this convention when you connect
multiple programs with the && (logical and) and || (logical or) operators. Therefore,
you should explicitly return zero from your main function, unless an error occurs.
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With most shells, it’s possible to obtain the exit code of the most recently executed
program using the special $? variable. Here’s an example in which the 1s command is
invoked twice and its exit code is displayed after each invocation. In the first case, 1s
executes correctly and returns the exit code zero. In the second case, 1s encounters an
error (because the filename specified on the command line does not exist) and thus
returns a nonzero exit code.

% 1s /

bin coda etc 1lib misc nfs proc shin usr
boot dev  home lost+found mnt opt root tmp var
% echo $?

0

% 1s bogusfile
1s: bogusfile: No such file or directory
% echo $?

-

Note that even though the parameter type of the exit function is int and the main
function returns an int, Linux does not preserve the full 32 bits of the return code. In
fact, you should use exit codes only between zero and 127. Exit codes above 128 have
a special meaning—when a process is terminated by a signal, its exit code is 128 plus
the signal number.

3.4.1 Waiting for Process Termination

If you typed in and ran the fork and exec example in Listing 3.4, you may have
noticed that the output from the 1s program often appears after the “main program”
has already completed. That’s because the child process, in which 1s is run, is sched-
uled independently of the parent process. Because Linux is a multitasking operating
system, both processes appear to execute simultaneously, and you can’t predict whether
the 1s program will have a chance to run before or after the parent process runs.

In some situations, though, it is desirable for the parent process to wait until one or
more child processes have completed. This can be done with the wait family of system
calls. These functions allow you to wait for a process to finish executing, and enable
the parent process to retrieve information about its child’s termination. There are four
different system calls in the wait family; you can choose to get a little or a lot of infor-
mation about the process that exited, and you can choose whether you care about
which child process terminated.

3.4.2 The wait System Calls

The simplest such function is called simply wait. It blocks the calling process until one
of its child processes exits (or an error occurs). It returns a status code via an integer
pointer argument, from which you can extract information about how the child process
exited. For instance, the WEXITSTATUS macro extracts the child process’s exit code.
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You can use the WIFEXITED macro to determine from a child process’s exit status
whether that process exited normally (via the exit function or returning from main)
or died from an unhandled signal. In the latter case, use the WTERMSIG macro to extract
from its exit status the signal number by which it died.

Here is the main function from the fork and exec example again. This time, the
parent process calls wait to wait until the child process, in which the 1s command
executes, is finished.

int main ()

{

int child_status;

/* The argument list to pass to the "1ls" command. */

char* arg_list[] = {

"1s", /* argv[0@], the name of the program. */

1,

N

NULL /* The argument list must end with a NULL. */
b

/* Spawn a child process running the "1s" command. Ignore the
returned child process ID. */
spawn ("ls", arg_list);

/* Wait for the child process to complete. */
wait (&child_status);
if (WIFEXITED (child_status))
printf ("the child process exited normally, with exit code %d\n",
WEXITSTATUS (child_status));
else
printf ("the child process exited abnormally\n");

return 0;
}
Several similar system calls are available in Linux, which are more flexible or provide
more information about the exiting child process. The waitpid function can be used
to wait for a specific child process to exit instead of any child process. The wait3 func-
tion returns CPU usage statistics about the exiting child process, and the wait4
function allows you to specify additional options about which processes to wait for.

3.4.3 Zombie Processes

If a child process terminates while its parent is calling a wait function, the child
process vanishes and its termination status is passed to its parent via the wait call. But
what happens when a child process terminates and the parent is not calling wait?
Does it simply vanish? No, because then information about its termination—such as
whether it exited normally and, if so, what its exit status is—would be lost. Instead,
when a child process terminates, is becomes a zombie process.
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A zombie process is a process that has terminated but has not been cleaned up yet. It
is the responsibility of the parent process to clean up its zombie children. The wait
functions do this, too, so it’s not necessary to track whether your child process is still
executing before waiting for it. Suppose, for instance, that a program forks a child
process, performs some other computations, and then calls wait. If the child process
has not terminated at that point, the parent process will block in the wait call until the
child process finishes. If the child process finishes before the parent process calls wait,
the child process becomes a zombie. When the parent process calls wait, the zombie
child’s termination status is extracted, the child process is deleted, and the wait call
returns immediately.

What happens if the parent does not clean up its children? They stay around in the
system, as zombie processes. The program in Listing 3.6 forks a child process, which
terminates immediately and then goes to sleep for a minute, without ever cleaning up

the child process.

Listing 3.6  (zombie.c) Making a Zombie Process
#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main ()
{
pid_t child_pid;

/* Create a child process. */

child_pid = fork ();

if (child_pid > 0) {
/* This is the parent process. Sleep for a minute. */
sleep (60);

}

else {
/* This is the child process. Exit immediately. */
exit (0);

}

return 0;

Try compiling this file to an executable named make -zombie. Run it, and while it’s still
running, list the processes on the system by invoking the following command in
another window:

% ps -e -0 pid,ppid,stat,cmd
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This lists the process ID, parent process ID, process status, and process command
line. Observe that, in addition to the parent make-zombie process, there is another
make -zombie process listed. It’s the child process; note that its parent process ID is
the process ID of the main make-zombie process. The child process is marked as
<defunct>, and its status code is Z, for zombie.

What happens when the main make-zombie program ends when the parent process
exits, without ever calling wait? Does the zombie process stay around? No—try
running ps again, and note that both of the make-zombie processes are gone. When a
program exits, its children are inherited by a special process, the init program, which
always runs with process ID of 1 (it’s the first process started when Linux boots). The
init process automatically cleans up any zombie child processes that it inherits.

3.4.4 Cleaning Up Children Asynchronously

If you're using a child process simply to exec another program, it’s fine to call wait
immediately in the parent process, which will block until the child process completes.
But often, you’ll want the parent process to continue running, as one or more children
execute synchronously. How can you be sure that you clean up child processes that
have completed so that you don’t leave zombie processes, which consume system
resources, lying around?

One approach would be for the parent process to call wait3 or wait4 periodically,
to clean up zombie children. Calling wait for this purpose doesn’t work well because,
if no children have terminated, the call will block until one does. However, wait3 and
wait4 take an additional flag parameter, to which you can pass the flag value WNOHANG.
With this flag, the function runs in nonblocking mode—it will clean up a terminated
child process if there is one, or simply return if there isn’t. The return value of the call
is the process ID of the terminated child in the former case, or zero in the latter case.

A more elegant solution is to notify the parent process when a child terminates.
There are several ways to do this using the methods discussed in Chapter 5,
“Interprocess Communication,” but fortunately Linux does this for you, using signals.
When a child process terminates, Linux sends the parent process the SIGCHLD signal.
The default disposition of this signal is to do nothing, which is why you might not
have noticed it before.

Thus, an easy way to clean up child processes is by handling SIGCHLD. Of course,
when cleaning up the child process, it’s important to store its termination status if this
information is needed, because once the process is cleaned up using wait, that infor-
mation is no longer available. Listing 3.7 1s what it looks like for a program to use a
SIGCHLD handler to clean up its child processes.
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Listing 3.7  (sigchld.c) Cleaning Up Children by Handling SIGCHLD

#include <signal.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)
{
/* Clean up the child process. */
int status;
wait (&status);
/* Store its exit status in a global variable. */
child_exit_status = status;

}

int main ()

{
/* Handle SIGCHLD by calling clean_up_child_process. */
struct sigaction sigchld_action;
memset (&sigchld_action, 0, sizeof (sigchld_action));
sigchld_action.sa_handler = &clean_up_child_process;
sigaction (SIGCHLD, &sigchld_action, NULL);

/* Now do things, including forking a child process. */
[* oo %

return 0;

Note how the signal handler stores the child process’s exit status in a global variable,
from which the main program can access it. Because the variable is assigned in a signal
handler, its type is sig_atomic_t.



Threads

-I-HREADS, LIKE PROCESSES, ARE A MECHANISM TO ALLOW A PROGRAM to do more than
one thing at a time. As with processes, threads appear to run concurrently; the Linux
kernel schedules them asynchronously, interrupting each thread from time to time to
give others a chance to execute.

Conceptually, a thread exists within a process. Threads are a finer-grained unit of
execution than processes. When you invoke a program, Linux creates a new process
and in that process creates a single thread, which runs the program sequentially. That
thread can create additional threads; all these threads run the same program in the
same process, but each thread may be executing a different part of the program at any
given time.

We’ve seen how a program can fork a child process. The child process is initially
running its parent’s program, with its parent’s virtual memory, file descriptors, and so
on copied. The child process can modify its memory, close file descriptors, and the like
without affecting its parent, and vice versa. When a program creates another thread,
though, nothing is copied. The creating and the created thread share the same memory
space, file descriptors, and other system resources as the original. If one thread changes
the value of a variable, for instance, the other thread subsequently will see the modi-
fied value. Similarly, if one thread closes a file descriptor, other threads may not read
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from or write to that file descriptor. Because a process and all its threads can be exe-
cuting only one program at a time, if any thread inside a process calls one of the exec
functions, all the other threads are ended (the new program may, of course, create new
threads).

GNU/Linux implements the POSIX standard thread API (known as pthreads). All
thread functions and data types are declared in the header file <pthread.h>.The
pthread functions are not included in the standard C library. Instead, they are in
libpthread, so you should add -1pthread to the command line when you link your
program.

4.1 Thread Creation

Each thread in a process is identified by a thread ID.When referring to thread IDs in
C or C++ programs, use the type pthread_t.

Upon creation, each thread executes a thread function. This is just an ordinary func-
tion and contains the code that the thread should run. When the function returns, the
thread exits. On GNU/Linux, thread functions take a single parameter, of type void*,
and have a void* return type.The parameter is the thread argument: GNU/Linux passes
the value along to the thread without looking at it. Your program can use this parame-
ter to pass data to a new thread. Similarly, your program can use the return value to
pass data from an exiting thread back to its creator.

The pthread_create function creates a new thread.You provide it with the following:

1. A pointer to a pthread_t variable, in which the thread ID of the new thread is
stored.

2. A pointer to a thread attribute object. This object controls details of how the
thread interacts with the rest of the program. If you pass NULL as the thread
attribute, a thread will be created with the default thread attributes. Thread
attributes are discussed in Section 4.1.5, “Thread Attributes.”

3. A pointer to the thread function. This is an ordinary function pointer, of this
type:
void* (*) (void*)

4. A thread argument value of type void*. Whatever you pass is simply passed as
the argument to the thread function when the thread begins executing.

A call to pthread_create returns immediately, and the original thread continues exe-
cuting the instructions following the call. Meanwhile, the new thread begins executing
the thread function. Linux schedules both threads asynchronously, and your program
must not rely on the relative order in which instructions are executed in the two
threads.
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The program in Listing 4.1 creates a thread that prints x’s continuously to standard
error. After calling pthread_create, the main thread prints o’s continuously to standard
error.

Listing 4.1  (thread-create.c) Create a Thread

#include <pthread.h>
#include <stdio.h>

/* Prints x's to stderr. The parameter is unused. Does not return. */

void* print_xs (void* unused)
{
while (1)
fputc ('x', stderr);
return NULL;
}

/* The main program. */

int main ()
{
pthread_t thread_id;
/* Create a new thread. The new thread will run the print_xs
function. */
pthread_create (&thread_id, NULL, &print_xs, NULL);
/* Print o's continuously to stderr. */
while (1)
fputc ('o', stderr);
return 0;

Compile and link this program using the following code:

% cC -0 thread-create thread-create.c -lpthread

Try running it to see what happens. Notice the unpredictable pattern of x’s and os as
Linux alternately schedules the two threads.

Under normal circumstances, a thread exits in one of two ways. One way, as illus-
trated previously, is by returning from the thread function. The return value from the
thread function is taken to be the return value of the thread. Alternately, a thread can
exit explicitly by calling pthread_exit. This function may be called from within the
thread function or from some other function called directly or indirectly by the thread
function. The argument to pthread_exit is the thread’s return value.
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4.1.1 Passing Data to Threads

The thread argument provides a convenient method of passing data to threads.
Because the type of the argument is void*, though, you can’t pass a lot of data directly
via the argument. Instead, use the thread argument to pass a pointer to some structure
or array of data. One commonly used technique is to define a structure for each
thread function, which contains the “parameters” that the thread function expects.

Using the thread argument, it’s easy to reuse the same thread function for many
threads. All these threads execute the same code, but on different data.

The program in Listing 4.2 is similar to the previous example. This one creates two
new threads, one to print x’s and the other to print o%. Instead of printing infinitely,
though, each thread prints a fixed number of characters and then exits by returning
from the thread function. The same thread function, char_print, is used by both
threads, but each is configured differently using struct char_print_parms

Listing 4.2 (thread-create2) Create Two Threads

#include <pthread.h>
#include <stdio.h>

/* Parameters to print_function. */

struct char_print_parms
{
/* The character to print. */
char character;
/* The number of times to print it. */
int count;

s

/* Prints a number of characters to stderr, as given by PARAMETERS,
which is a pointer to a struct char_print_parms. */

void* char_print (void* parameters)

{
/* Cast the cookie pointer to the right type. */
struct char_print_parms* p = (struct char_print_parms*) parameters;
int i;

for (1 =0; i < p->count; ++1i)
fputc (p->character, stderr);
return NULL;
}

/* The main program. */
int main ()

{
pthread_t threadi_id;
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pthread_t thread2_id;
struct char_print_parms threadi_args;
struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 'x's. */
threadi_args.character = 'x';

threadi_args.count = 30000;

pthread_create (&threadi_id, NULL, &char_print, &threadi_args);

/* Create a new thread to print 20,000 o's. */
thread2_args.character = '0';

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

return 0;

But wait! The program in Listing 4.2 has a serious bug in it. The main thread (which
runs the main function) creates the thread parameter structures (thread1_args and
thread2_args) as local variables, and then passes pointers to these structures to the
threads it creates. What’s to prevent Linux from scheduling the three threads in such a
way that main finishes executing before either of the other two threads are done?
Nothing! But if this happens, the memory containing the thread parameter structures
will be deallocated while the other two threads are still accessing it.

4.1.2 Joining Threads

One solution is to force main to wait until the other two threads are done. What we
need is a function similar to wait that waits for a thread to finish instead of a process.
That function is pthread_join, which takes two arguments: the thread ID of the
thread to wait for, and a pointer to a void* variable that will receive the finished
thread’s return value. If you don’t care about the thread return value, pass NULL as the
second argument.

Listing 4.3 shows the corrected main function for the buggy example in Listing 4.2.
In this version, main does not exit until both of the threads printing x’s and o’s have
completed, so they are no longer using the argument structures.

Listing 4.3 Revised Main Function for thread-create2.c

int main ()
{
pthread_t threadi_id;
pthread_t thread2_id;
struct char_print_parms threadi_args;
struct char_print_parms thread2_args;

continues
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Listing 4.3 Continued

/* Create a new thread to print 30,000 x's. */
thread1_args.character = 'x';

thread1_args.count = 30000;

pthread_create (&threadi_id, NULL, &char_print, &threadi_args);

/* Create a new thread to print 20,000 o's. */
thread2_args.character = 'o';

thread2_args.count = 20000;

pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

/* Make sure the first thread has finished. */
pthread_join (threadi_id, NULL);
/* Make sure the second thread has finished. */
pthread_join (thread2_id, NULL);

/* Now we can safely return. */
return 0;

The moral of the story: Make sure that any data you pass to a thread by reference is
not deallocated, even by a different thread, until you’re sure that the thread is done with
it. This is true both for local variables, which are deallocated when they go out of
scope, and for heap-allocated variables, which you deallocate by calling free (or using
delete in C++).

4.1.3 Thread Return Values

If the second argument you pass to pthread_join is non-null, the thread’s return value
will be placed in the location pointed to by that argument. The thread return value,
like the thread argument, is of type void*. If you want to pass back a single int or
other small number, you can do this easily by casting the value to void* and then
casting back to the appropriate type after calling pthread_join.'

The program in Listing 4.4 computes the nth prime number in a separate thread.
That thread returns the desired prime number as its thread return value. The main
thread, meanwhile, is free to execute other code. Note that the successive division
algorithm used in compute_prime is quite inefficient; consult a book on numerical
algorithims if you need to compute many prime numbers in your programs.

1. Note that this is not portable, and it’s up to you to make sure that your value can be cast
safely to void* and back without losing bits.
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Listing 4.4 (primes.c) Compute Prime Numbers in a Thread

#include <pthread.h>
#include <stdio.h>

/* Compute successive prime numbers (very inefficiently). Return the
Nth prime number, where N is the value pointed to by *ARG. */

void* compute_prime (void* arg)
{

int candidate = 2;

int n = *((int*) arg);

while (1) {
int factor;
int is_prime = 1;

/* Test primality by successive division. */
for (factor = 2; factor < candidate; ++factor)
if (candidate % factor == 0) {
is_prime = 0;
break;
}
[* Is this the prime number we're looking for? */
if (is_prime) {
if (--n == 0)
/* Return the desired prime number as the thread return value. */
return (void*) candidate;
}
++candidate;
}
return NULL;
}

int main ()

{
pthread_t thread;
int which_prime = 5000;
int prime;

/* Start the computing thread, up to the 5,000th prime number. */
pthread_create (&thread, NULL, &compute_prime, &which_prime);

/* Do some other work here... */

/* Wait for the prime number thread to complete, and get the result. */
pthread_join (thread, (void*) &prime);

/* Print the largest prime it computed. */

printf("The %dth prime number is %d.\n", which_prime, prime);

return 0;
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4.1.4 More on Thread IDs

Occasionally, it is useful for a sequence of code to determine which thread is execut-
ing it. The pthread_self function returns the thread ID of the thread in which it is
called. This thread ID may be compared with another thread ID using the
pthread_equal function.

These functions can be useful for determining whether a particular thread ID
corresponds to the current thread. For instance, it is an error for a thread to call
pthread_join to join itself. (In this case, pthread_join would return the error code
EDEADLK.) To check for this beforehand, you might use code like this:

if (!pthread_equal (pthread_self (), other_thread))
pthread_join (other_thread, NULL);

4.1.5 Thread Attributes

Thread attributes provide a mechanism for fine-tuning the behavior of individual
threads. Recall that pthread_create accepts an argument that is a pointer to a thread
attribute object. If you pass a null pointer, the default thread attributes are used to
configure the new thread. However, you may create and customize a thread attribute
object to specify other values for the attributes.

To specify customized thread attributes, you must follow these steps:

1. Create a pthread_attr_t object. The easiest way is simply to declare an auto-
matic variable of this type.

2. Call pthread_attr_init, passing a pointer to this object. This initializes the
attributes to their default values.

Modify the attribute object to contain the desired attribute values.
Pass a pointer to the attribute object when calling pthread_create.

Call pthread_attr_destroy to release the attribute object. The pthread_attr_t
variable itself is not deallocated; it may be reinitialized with pthread_attr_init.

A single thread attribute object may be used to start several threads. It is not necessary
to keep the thread attribute object around after the threads have been created.

For most GNU/Linux application programming tasks, only one thread attribute is
typically of interest (the other available attributes are primarily for specialty real-time
programming). This attribute is the thread’s detach state. A thread may be created as a
joinable thread (the default) or as a detached thread. A joinable thread, like a process, is not
automatically cleaned up by GNU/Linux when it terminates. Instead, the thread’s exit
state hangs around in the system (kind of like a zombie process) until another thread
calls pthread_join to obtain its return value. Only then are its resources released. A
detached thread, in contrast, is cleaned up automatically when it terminates. Because a
detached thread is immediately cleaned up, another thread may not synchronize on its
completion by using pthread_join or obtain its return value.
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To set the detach state in a thread attribute object, use pthread_attr_setdetachstate.
The first argument is a pointer to the thread attribute object, and the second is the
desired detach state. Because the joinable state is the default, it is necessary to call this only
to create detached threads; pass PTHREAD_CREATE_DETACHED as the second argument.

The code in Listing 4.5 creates a detached thread by setting the detach state thread
attribute for the thread.

Listing 4.5 (detached.c) Skeleton Program That Creates a Detached Thread

#include <pthread.h>

void* thread_function (void* thread_arg)

{
/* Do work here... */
}
int main ()
{

pthread_attr_t attr;
pthread_t thread;

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
pthread_create (&thread, &attr, &thread_function, NULL);
pthread_attr_destroy (&attr);

/* Do work here... */

/* No need to join the second thread. */
return 0;

Even if a thread is created in a joinable state, it may later be turned into a detached
thread. To do this, call pthread_detach. Once a thread is detached, it cannot be made
joinable again.

4.2 Thread Cancellation

Under normal circumstances, a thread terminates when it exits normally, either by
returning from its thread function or by calling pthread_exit. However, it is possible
for a thread to request that another thread terminate. This is called canceling a thread.

To cancel a thread, call pthread_cancel, passing the thread ID of the thread to be
canceled. A canceled thread may later be joined; in fact, you should join a canceled
thread to free up its resources, unless the thread is detached (see Section 4.1.5, “Thread
Attributes”). The return value of a canceled thread is the special value given by
PTHREAD_CANCELED.
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Often a thread may be in some code that must be executed in an all-or-nothing
fashion. For instance, the thread may allocate some resources, use them, and then deal-
locate them. If the thread is canceled in the middle of this code, it may not have the
opportunity to deallocate the resources, and thus the resources will be leaked. To
counter this possibility, it is possible for a thread to control whether and when it can
be canceled.

A thread may be in one of three states with regard to thread cancellation.

= The thread may be asynchronously cancelable. The thread may be canceled at any
point in its execution.

= The thread may be synchronously cancelable. The thread may be canceled, but not
at just any point in its execution. Instead, cancellation requests are queued, and
the thread 1s canceled only when it reaches specific points in its execution.

= A thread may be uncancelable. Attempts to cancel the thread are quietly ignored.

When initially created, a thread is synchronously cancelable.

4.2.1 Synchronous and Asynchronous Threads

An asynchronously cancelable thread may be canceled at any point in its execution. A
synchronously cancelable thread, in contrast, may be canceled only at particular places
in its execution. These places are called cancellation points. The thread will queue a can-
cellation request until it reaches the next cancellation point.

To make a thread asynchronously cancelable, use pthread_setcanceltype. This
affects the thread that actually calls the function. The first argument should be
PTHREAD_CANCEL_ASYNCHRONOUS to make the thread asynchronously cancelable, or
PTHREAD_CANCEL_DEFERRED to return it to the synchronously cancelable state. The sec-
ond argument, if not null, is a pointer to a variable that will receive the previous can-
cellation type for the thread. This call, for example, makes the calling thread
asynchronously cancelable.

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

What constitutes a cancellation point, and where should these be placed? The most
direct way to create a cancellation point is to call pthread_testcancel. This does
nothing except process a pending cancellation in a synchronously cancelable thread.
You should call pthread_testcancel periodically during lengthy computations in a
thread function, at points where the thread can be canceled without leaking any
resources or producing other ill effects.

Certain other functions are implicitly cancellation points as well. These are listed on
the pthread_cancel man page. Note that other functions may use these functions
internally and thus will indirectly be cancellation points.
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4.2.2 Uncancelable Critical Sections

A thread may disable cancellation of itself altogether with the
pthread_setcancelstate function. Like pthread_setcanceltype, this affects the calling
thread. The first argument is PTHREAD_CANCEL_DISABLE to disable cancellation, or
PTHREAD_CANCEL_ENABLE to re-cnable cancellation. The second argument, if not null,
points to a variable that will receive the previous cancellation state. This call, for
instance, disables thread cancellation in the calling thread.

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL);

Using pthread_setcancelstate enables you to implement critical sections. A critical sec-
tion is a sequence of code that must be executed either in its entirety or not at all; in
other words, if a thread begins executing the critical section, it must continue until the
end of the critical section without being canceled.

For example, suppose that youre writing a routine for a banking program that
transfers money from one account to another. To do this, you must add value to the
balance in one account and deduct the same value from the balance of another
account. If the thread running your routine happened to be canceled at just the wrong
time between these two operations, the program would have spuriously increased the
bank’s total deposits by failing to complete the transaction. To prevent this possibility,
place the two operations in a critical section.

You might implement the transfer with a function such as process_transaction,
shown in Listing 4.6. This function disables thread cancellation to start a critical sec-
tion before it modifies either account balance.

Listing 4.6  (critical-section.c) Protect a Bank Transaction with a Critical Section

#include <pthread.h>
#include <stdio.h>
#include <string.h>

/* An array of balances in accounts, indexed by account number. */
float* account_balances;

/* Transfer DOLLARS from account FROM_ACCT to account TO_ACCT. Return
0 if the transaction succeeded, or 1 if the balance FROM_ACCT is
too small. */

int process_transaction (int from_acct, int to_acct, float dollars)

{
int old_cancel_state;

/* Check the balance in FROM_ACCT. */
if (account_balances[from_acct] < dollars)
return 1;

continues

71



72

Chapter 4 Threads

Listing 4.6 Continued

/* Begin critical section. */

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &old cancel_ state);
/* Move the money. */

account_balances[to_acct] += dollars;

account_balances[from_acct] -= dollars;

/* End critical section. */

pthread_setcancelstate (old_cancel_state, NULL);

return 0;

Note that it’s important to restore the old cancel state at the end of the critical section
rather than setting it unconditionally to PTHREAD_CANCEL_ENABLE. This enables you to
call the process_transaction function safely from within another critical section—in
that case, your function will leave the cancel state the same way it found it.

4.2.3 When to Use Thread Cancellation

In general, it’s a good idea not to use thread cancellation to end the execution of a
thread, except in unusual circumstances. During normal operation, a better strategy is
to indicate to the thread that it should exit, and then to wait for the thread to exit on
its own in an orderly fashion. We’ll discuss techniques for communicating with the
thread later in this chapter, and in Chapter 5, “Interprocess Communication.”

4.3 Thread-Specific Data

Unlike processes, all threads in a single program share the same address space. This
means that if one thread modifies a location in memory (for instance, a global vari-
able), the change is visible to all other threads. This allows multiple threads to operate
on the same data without the use interprocess communication mechanisms (which are
described in Chapter 5).

Each thread has its own call stack, however. This allows each thread to execute dif-
ferent code and to call and return from subroutines in the usual way. As in a single-
threaded program, each invocation of a subroutine in each thread has its own set of
local variables, which are stored on the stack for that thread.

Sometimes, however, it is desirable to duplicate a certain variable so that each
thread has a separate copy. GNU/Linux supports this by providing each thread with a
thread-specific data area. The variables stored in this area are duplicated for each thread,
and each thread may modify its copy of a variable without affecting other threads.
Because all threads share the same memory space, thread-specific data may not be
accessed using normal variable references. GNU/Linux provides special functions for
setting and retrieving values from the thread-specific data area.



4.3 Thread-Specific Data

You may create as many thread-specific data items as you want, each of type void*.
Each item is referenced by a key. To create a new key, and thus a new data item for
each thread, use pthread_key_create. The first argument is a pointer to a
pthread_key_t variable. That key value can be used by each thread to access its own
copy of the corresponding data item. The second argument to pthread_key_t is a
cleanup function. If you pass a function pointer here, GNU/Linux automatically calls
that function when each thread exits, passing the thread-specific value corresponding
to that key. This is particularly handy because the cleanup function is called even if the
thread is canceled at some arbitrary point in its execution. If the thread-specific value
is null, the thread cleanup function is not called. If you don’t need a cleanup function,
you may pass null instead of a function pointer.

After you've created a key, each thread can set its thread-specific value correspond-
ing to that key by calling pthread_setspecific. The first argument is the key, and the
second is the void* thread-specific value to store. To retrieve a thread-specific data
item, call pthread_getspecific, passing the key as its argument.

Suppose, for instance, that your application divides a task among multiple threads.
For audit purposes, each thread is to have a separate log file, in which progress mes-
sages for that thread’s tasks are recorded. The thread-specific data area is a convenient
place to store the file pointer for the log file for each individual thread.

Listing 4.7 shows how you might implement this. The main function in this sample
program creates a key to store the thread-specific file pointer and then stores it in
thread_log_key. Because this is a global variable, it is shared by all threads. When each
thread starts executing its thread function, it opens a log file and stores the file pointer
under that key. Later, any of these threads may call write_to_thread_log to write a
message to the thread-specific log file. That function retrieves the file pointer for the
thread’s log file from thread-specific data and writes the message.

Listing 4.7  (tsd.c) Per-Thread Log Files Implemented with Thread-Specific Data

#include <malloc.h>
#include <pthread.h>
#include <stdio.h>

/* The key used to associate a log file pointer with each thread. */
static pthread_key_t thread_log_key;

/* Write MESSAGE to the log file for the current thread. */

void write_to_thread_log (const char* message)

{
FILE* thread_log = (FILE*) pthread_getspecific (thread_log_key);
fprintf (thread_log, "%s\n", message);

}

/* Close the log file pointer THREAD_LOG. */

void close_thread_log (void* thread_log)

continues
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Listing 4.7 Continued

{

fclose ((FILE*) thread_log);
}

void* thread_function (void* args)
{
char thread_log_filename[20];
FILE* thread_log;

/* Generate the filename for this thread's log file. */

sprintf (thread_log_filename, "thread%d.log", (int) pthread_self ());

/* Open the log file. */

thread_log = fopen (thread_log_filename, "w");

/* Store the file pointer in thread-specific data under thread_log_key. */
pthread_setspecific (thread_log_key, thread_log);

write_to_thread_log ("Thread starting.");
/* Do work here... */

return NULL;
}

int main ()
{
int i;
pthread_t threads[5];

/* Create a key to associate thread log file pointers in
thread-specific data. Use close_thread_log to clean up the file
pointers. */

pthread_key_create (&thread_log_key, close_thread_log);

/* Create threads to do the work. */

for (1 = 0; i <5; ++i)

pthread_create (&(threads[i]), NULL, thread_function, NULL);
/* Wait for all threads to finish. */
for (1 = 0; i <5; ++i)

pthread_join (threads[i], NULL);
return 0;

Observe that thread_function does not need to close the log file. That’s because when
the log file key was created, close_thread_log was specified as the cleanup function
for that key. Whenever a thread exits, GNU/Linux calls that function, passing the
thread-specific value for the thread log key. This function takes care of closing the

log file.
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4.3.1 Cleanup Handlers

The cleanup functions for thread-specific data keys can be very handy for ensuring
that resources are not leaked when a thread exits or is canceled. Sometimes, though,
it’s useful to be able to specify cleanup functions without creating a new thread-
specific data item that’s duplicated for each thread. GNU/Linux provides cleanup
handlers for this purpose.

A cleanup handler is simply a function that should be called when a thread exits.
The handler takes a single void* parameter, and its argument value is provided when
the handler is registered—this makes it easy to use the same handler function to deal-
locate multiple resource instances.

A cleanup handler is a temporary measure, used to deallocate a resource only if the
thread exits or is canceled instead of finishing execution of a particular region of code.
Under normal circumstances, when the thread does not exit and is not canceled, the
resource should be deallocated explicitly and the cleanup handler should be removed.

To register a cleanup handler, call pthread_cleanup_push, passing a pointer
to the cleanup function and the value of its void* argument. The call to
pthread_cleanup_push must be balanced by a corresponding call to
pthread_cleanup_pop, which unregisters the cleanup handler. As a convenience,
pthread_cleanup_pop takes an int flag argument; if the flag is nonzero, the cleanup
action is actually performed as it is unregistered.

The program fragment in Listing 4.8 shows how you might use a cleanup handler
to make sure that a dynamically allocated buffer is cleaned up if the thread terminates.

Listing 4.8  (cleanup.c) Program Fragment Demonstrating a Thread
Cleanup Handler

#include <malloc.h>
#include <pthread.h>

/* Allocate a temporary buffer. */

void* allocate_buffer (size_t size)

{

return malloc (size);

}
/* Deallocate a temporary buffer. */

void deallocate_buffer (void* buffer)

{
free (buffer);

}
void do_some_work ()
{

/* Allocate a temporary buffer. */

continues
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Listing 4.8 Continued

void* temp_buffer = allocate_buffer (1024);

/* Register a cleanup handler for this buffer, to deallocate it in
case the thread exits or is cancelled. */

pthread_cleanup_push (deallocate buffer, temp_buffer);

/* Do some work here that might call pthread_exit or might be
cancelled... */

/* Unregister the cleanup handler. Because we pass a nonzero value,
this actually performs the cleanup by calling
deallocate_buffer. */

pthread_cleanup_pop (1);

Because the argument to pthread_cleanup_pop is nonzero in this case, the cleanup
function deallocate_buffer is called automatically here and does not need to be
called explicitly. In this simple case, we could have used the standard library function
free directly as our cleanup handler function instead of deallocate_buffer.

4.3.2 Thread Cleanup in C++

C++ programmers are accustomed to getting cleanup “for free” by wrapping cleanup
actions in object destructors. When the objects go out of scope, either because a block
is executed to completion or because an exception is thrown, C++ makes sure that
destructors are called for those automatic variables that have them. This provides a
handy mechanism to make sure that cleanup code is called no matter how the block is
exited.

If a thread calls pthread_exit, though, C++ doesn’t guarantee that destructors are
called for all automatic variables on the thread’s stack. A clever way to recover this
functionality is to invoke pthread_exit at the top level of the thread function by
throwing a special exception.

The program in Listing 4.9 demonstrates this. Using this technique, a function indi-
cates its intention to exit the thread by throwing a ThreadExitException instead of
calling pthread_exit directly. Because the exception is caught in the top-level thread
function, all local variables on the thread’s stack will be destroyed properly as the
exception percolates up.

Listing 4.9  (cxx-exit.cpp) Implementing Safe Thread Exit with C++ Exceptions

#include <pthread.h>

class ThreadExitException
{
public:
/* Create an exception-signaling thread exit with RETURN_VALUE. */
ThreadExitException (void* return_value)
: thread_return_value_ (return_value)
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{
}

/* Actually exit the thread, using the return value provided in the
constructor. */

void* DoThreadExit ()

{
pthread_exit (thread_return_value_);

}

private:
/* The return value that will be used when exiting the thread. */
void* thread_return_value_;

s

void do_some_work ()
{
while (1) {
/* Do some useful things here... */

if (should_exit_thread_immediately ())
throw ThreadExitException (/* thread's return value = */ NULL);
}
}

void* thread_function (void*)
{
try {
do_some_work ();
}
catch (ThreadExitException ex) {
/* Some function indicated that we should exit the thread. */
ex.DoThreadExit ();
}
return NULL;
}

4.4 Synchronization and Critical Sections

Programming with threads is very tricky because most threaded programs are concur-
rent programs. In particular, there’s no way to know when the system will schedule
one thread to run and when it will run another. One thread might run for a very
long time, or the system might switch among threads very quickly. On a system with
multiple processors, the system might even schedule multiple threads to run at literally
the same time.

Debugging a threaded program is difficult because you cannot always easily repro-
duce the behavior that caused the problem.You might run the program once and have
everything work fine; the next time you run it, it might crash. There’s no way to make
the system schedule the threads exactly the same way it did before.
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The ultimate cause of most bugs involving threads is that the threads are accessing
the same data. As mentioned previously, that’s one of the powerful aspects of threads,
but it can also be dangerous. If one thread is only partway through updating a data
structure when another thread accesses the same data structure, chaos is likely to
ensue. Often, buggy threaded programs contain a code that will work only if one
thread gets scheduled more often—or sooner—than another thread. These bugs are
called race conditions; the threads are racing one another to change the same data
structure.

4.4.1 Race Conditions

Suppose that your program has a series of queued jobs that are processed by several
concurrent threads. The queue of jobs is represented by a linked list of struct job
objects.

After each thread finishes an operation, it checks the queue to see if an additional
job is available. If job_queue is non-null, the thread removes the head of the linked list
and sets job_queue to the next job on the list.

The thread function that processes jobs in the queue might look like Listing 4.10.

Listing 4.10  (job-quenel.c) Thread Function to Process Jobs from the Queue

#include <malloc.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */

s

/* A linked list of pending jobs. */
struct job* job_queue;

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (job_queue != NULL) {
/* Get the next available job. */
struct job* next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);
}
return NULL;
}
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Now suppose that two threads happen to finish a job at about the same time, but only
one job remains in the queue. The first thread checks whether job_queue is null; find-
ing that it isn’t, the thread enters the loop and stores the pointer to the job object in
next_job. At this point, Linux happens to interrupt the first thread and schedules the
second. The second thread also checks job_queue and finding it non-null, also assigns
the same job pointer to next_job. By unfortunate coincidence, we now have two
threads executing the same job.

To make matters worse, one thread will unlink the job object from the queue,
leaving job_queue containing null. When the other thread evaluates job_queue ->next,
a segmentation fault will result.

This is an example of a race condition. Under “lucky” circumstances, this particular
schedule of the two threads may never occur, and the race condition may never
exhibit itself. Only under different circumstances, perhaps when running on a heavily
loaded system (or on an important customer’s new multiprocessor server!) may the
bug exhibit itself.

To eliminate race conditions, you need a way to make operations afomic. An atomic
operation is indivisible and uninterruptible; once the operation starts, it will not be
paused or interrupted until it completes, and no other operation will take place mean-
while. In this particular example, you want to check job_queue; if it’s not empty,
remove the first job, all as a single atomic operation.

4.4.2 Mutexes

The solution to the job queue race condition problem is to let only one thread access
the queue of jobs at a time. Once a thread starts looking at the queue, no other thread
should be able to access it until the first thread has decided whether to process a job
and, if so, has removed the job from the list.

Implementing this requires support from the operating system. GNU/Linux pro-
vides mutexes, short for MUTial EXclusion locks. A mutex is a special lock that only one
thread may lock at a time. If a thread locks a mutex and then a second thread also tries
to lock the same mutex, the second thread is blocked, or put on hold. Only when the
first thread unlocks the mutex is the second thread unblocked—allowed to resume
execution. GNU/Linux guarantees that race conditions do not occur among threads
attempting to lock a mutex; only one thread will ever get the lock, and all other
threads will be blocked.

Think of a mutex as the lock on a lavatory door. Whoever gets there first enters the
lavatory and locks the door. If someone else attempts to enter the lavatory while it’s
occupied, that person will find the door locked and will be forced to wait outside
until the occupant emerges.

To create a mutex, create a variable of type pthread_mutex_t and pass a pointer to
it to pthread_mutex_init.The second argument to pthread_mutex_init is a pointer
to a mutex attribute object, which specifies attributes of the mutex. As with
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pthread_create, if the attribute pointer is null, default attributes are assumed. The
mutex variable should be initialized only once. This code fragment demonstrates the
declaration and initialization of a mutex variable.

pthread_mutex_t mutex;
pthread_mutex_init (&mutex, NULL);

Another simpler way to create a mutex with default attributes is to initialize it
with the special value PTHREAD_MUTEX_INITIALIZER. No additional call to
pthread_mutex_init is necessary. This is particularly convenient for global variables
(and, in C++, static data members). The previous code fragment could equivalently
have been written like this:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

A thread may attempt to lock a mutex by calling pthread_mutex_lock on it. If the
mutex was unlocked, it becomes locked and the function returns immediately. If the
mutex was locked by another thread, pthread_mutex_lock blocks execution and
returns only eventually when the mutex is unlocked by the other thread. More than
one thread may be blocked on a locked mutex at one time. When the mutex is
unlocked, only one of the blocked threads (chosen unpredictably) is unblocked and
allowed to lock the mutex; the other threads stay blocked.

A call to pthread_mutex_unlock unlocks a mutex. This function should always be
called from the same thread that locked the mutex.

Listing 4.11 shows another version of the job queue example. Now the queue is
protected by a mutex. Before accessing the queue (either for read or write), each
thread locks a mutex first. Only when the entire sequence of checking the queue and
removing a job is complete is the mutex unlocked. This prevents the race condition
previously described.

Listing 4.11  (job-queune2.c) Job Queue Thread Function, Protected by a Mutex

#include <malloc.h>
#include <pthread.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
b

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;
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/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (1) {
struct job* next_job;

/* Lock the mutex on the job queue. */
pthread_mutex_lock (&job_queue_mutex);
/* Now it's safe to check if the queue is empty. */
if (job_queue == NULL)
next_job = NULL;
else {
/* Get the next available job. */
next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
}
/* Unlock the mutex on the job queue because we're done with the
queue for now. */
pthread_mutex_unlock (&job_queue_mutex);

/* Was the queue empty? If so, end the thread. */
if (next_job == NULL)
break;

/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);
}
return NULL;
}

All accesses to job_queue, the shared data pointer, come between the call to
pthread_mutex_lock and the call to pthread_mutex_unlock.A job object, stored in
next_job, is accessed outside this region only after that object has been removed from
the queue and is therefore inaccessible to other threads.

Note that if the queue is empty (that is, job_queue is null), we don’t break out of
the loop immediately because this would leave the mutex permanently locked and
would prevent any other thread from accessing the job queue ever again. Instead, we
remember this fact by setting next_job to null and breaking out only after unlocking
the mutex.

Use of the mutex to lock job_queue is not automatic; it’s up to you to add code to
lock the mutex before accessing that variable and then to unlock it afterward. For
example, a function to add a job to the job queue might look like this:

void enqueue_job (struct job* new_job)

{

pthread_mutex_lock (&job_queue_mutex);
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new_job->next = job_queue;
job_queue = new_job;
pthread_mutex_unlock (&job_queue_mutex);

}

4.4.3 Mutex Deadlocks

Mutexes provide a mechanism for allowing one thread to block the execution of
another. This opens up the possibility of a new class of bugs, called deadlocks. A dead-
lock occurs when one or more threads are stuck waiting for something that never will
occur.

A simple type of deadlock may occur when the same thread attempts to lock a
mutex twice in a row. The behavior in this case depends on what kind of mutex is
being used. Three kinds of mutexes exist:

= Locking a fast mutex (the default kind) will cause a deadlock to occur. An
attempt to lock the mutex blocks until the mutex is unlocked. But because the
thread that locked the mutex is blocked on the same mutex, the lock cannot
ever be released.

= Locking a recursive mutex does not cause a deadlock. A recursive mutex may
safely be locked many times by the same thread. The mutex remembers how
many times pthread_mutex_lock was called on it by the thread that holds the
lock; that thread must make the same number of calls to pthread_mutex_unlock
before the mutex is actually unlocked and another thread is allowed to lock it.

= GNU/Linux will detect and flag a double lock on an error-checking mutex that
would otherwise cause a deadlock. The second consecutive call to
pthread_mutex_lock returns the failure code EDEADLK.

By default, a GNU/Linux mutex is of the fast kind. To create a mutex of one
of the other two kinds, first create a mutex attribute object by declaring a
pthread_mutexattr_t variable and calling pthread_mutexattr_init on a
pointer to it. Then set the mutex kind by calling pthread_mutexattr_setkind_np; the
first argument is a pointer to the mutex attribute object, and the second is
PTHREAD_MUTEX_RECURSIVE_NP for a recursive mutex, or PTHREAD_MUTEX_ERRORCHECK_NP
for an error-checking mutex. Pass a pointer to this attribute object to
pthread_mutex_init to create a mutex of this kind, and then destroy the attribute
object with pthread_mutexattr_destroy.

This code sequence illustrates creation of an error-checking mutex, for instance:

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

pthread_mutexattr_init (&attr);

pthread_mutexattr_setkind_np (&attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_init (&mutex, &attr);

pthread_mutexattr_destroy (&attr);
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As suggested by the “np” suffix, the recursive and error-checking mutex kinds are spe-
cific to GNU/Linux and are not portable. Therefore, it is generally not advised to use
them in programs. (Error-checking mutexes can be useful when debugging, though.)

4.4.4 Nonblocking Mutex Tests

Occasionally, it is useful to test whether a mutex is locked without actually blocking
on it. For instance, a thread may need to lock a mutex but may have other work to do
instead of blocking if the mutex is already locked. Because pthread_mutex_lock will
not return until the mutex becomes unlocked, some other function is necessary.

GNU/Linux provides pthread_mutex_trylock for this purpose. If you call
pthread_mutex_trylock on an unlocked mutex, you will lock the mutex as if you had
called pthread_mutex_lock, and pthread_mutex_trylock will return zero. However, if
the mutex is already locked by another thread, pthread_mutex_trylock will not block.
Instead, it will return immediately with the error code EBUSY. The mutex lock held by
the other thread is not affected. You may try again later to lock the mutex.

4.4.5 Semaphores for Threads

In the preceding example, in which several threads process jobs from a queue, the
main thread function of the threads carries out the next job until no jobs are left and
then exits the thread. This scheme works if all the jobs are queued in advance or if
new jobs are queued at least as quickly as the threads process them. However, if the
threads work too quickly, the queue of jobs will empty and the threads will exit. If
new jobs are later enqueued, no threads may remain to process them. What we might
like instead is a mechanism for blocking the threads when the queue empties until
new jobs become available.

A semaphore provides a convenient method for doing this. A semaphore is a counter
that can be used to synchronize multiple threads. As with a mutex, GNU/Linux guar-
antees that checking or modifying the value of a semaphore can be done safely, with-
out creating a race condition.

Each semaphore has a counter value, which is a non-negative integer. A semaphore
supports two basic operations:

= A wait operation decrements the value of the semaphore by 1. If the value is
already zero, the operation blocks until the value of the semaphore becomes
positive (due to the action of some other thread). When the semaphore’s value
becomes positive, it is decremented by 1 and the wait operation returns.

= A post operation increments the value of the semaphore by 1. If the semaphore
was previously zero and other threads are blocked in a wait operation on that
semaphore, one of those threads is unblocked and its wait operation completes
(which brings the semaphore’s value back to zero).
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Note that GNU/Linux provides two slightly different semaphore implementations.
The one we describe here is the POSIX standard semaphore implementation. Use
these semaphores when communicating among threads The other implementation,
used for communication among processes, is described in Section 5.2, “Process
Semaphores.” If you use semaphores, include <semaphore.h>.

A semaphore is represented by a sem_t variable. Before using it, you must initialize
it using the sem_init function, passing a pointer to the sem_t variable. The second
parameter should be zero,” and the third parameter is the semaphore’s initial value. If
you no longer need a semaphore, it’s good to deallocate it with sem_destroy.

To wait on a semaphore, use sem_wait.To post to a semaphore, use sem_post.

A nonblocking wait function, sem_trywait, is also provided. It’s similar to
pthread_mutex_trylock—if the wait would have blocked because the semaphore’s
value was zero, the function returns immediately, with error value EAGAIN, instead of
blocking.

GNU/Linux also provides a function to retrieve the current value of a semaphore,
sem_getvalue, which places the value in the int variable pointed to by its second
argument. You should not use the semaphore value you get from this function to make
a decision whether to post to or wait on the semaphore, though.To do this could lead
to a race condition: Another thread could change the semaphore’s value between the
call to sem_getvalue and the call to another semaphore function. Use the atomic post
and wait functions instead.

Returning to our job queue example, we can use a semaphore to count the num-
ber of jobs waiting in the queue. Listing 4.12 controls the queue with a semaphore.
The function enqueue_job adds a new job to the queue.

Listing 4.12  (job-quene3.c) Job Queue Controlled by a Semaphore

#include <malloc.h>
#include <pthread.h>
#include <semaphore.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */

s

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

2. A nonzero value would indicate a semaphore that can be shared across processes, which is
not supported by GNU/Linux for this type of semaphore.
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/* A semaphore counting the number of jobs in the queue. */
sem_t job_queue_count;

/* Perform one-time initialization of the job queue. */

void initialize_job_queue ()

{

/* The queue is initially empty. */
job_queue = NULL;
/* Initialize the semaphore which counts jobs in the queue. Its

initial value should be zero. */

sem_init (&job_queue_count, 0, 0);

}

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)

{
while (1) {

struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,
indicating that the queue is not empty, decrement the count by
1. If the queue is empty, block until a new job is enqueued. */

sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */

pthread_mutex_lock (&job_queue_mutex);

/* Because of the semaphore, we know the queue is not empty. Get
the next available job. */

next_job = job_queue;

/* Remove this job from the list. */

job_queue = job_queue->next;

/* Unlock the mutex on the job queue because we're done with the
queue for now. */

pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */

process_job (next_job);

/* Clean up. */

free (next_job);

}

return NULL;

}

/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)

{

struct job* new_job;

continues
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Listing 4.12 Continued

/* Allocate a new job object. */
new_job = (struct job*) malloc (sizeof (struct job));
/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */
pthread_mutex_lock (&job_queue_mutex);

/* Place the new job at the head of the queue. */
new_job->next = job_queue;

job_queue = new_job;

/* Post to the semaphore to indicate that another job is available. If
threads are blocked, waiting on the semaphore, one will become
unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */
pthread_mutex_unlock (&job_queue_mutex);

Before taking a job from the front of the queue, each thread will first wait on the
semaphore. If the semaphore’s value is zero, indicating that the queue is empty, the
thread will simply block until the semaphore’s value becomes positive, indicating that a
job has been added to the queue.

The enqueue_job function adds a job to the queue. Just like thread_function, it
needs to lock the queue mutex before modifying the queue. After adding a job to the
queue, it posts to the semaphore, indicating that a new job is available. In the version
shown in Listing 4.12, the threads that process the jobs never exit; if no jobs are avail-
able for a while, all the threads simply block in sem_wait.

4.4.6 Condition Variables

We’ve shown how to use a mutex to protect a variable against simultaneous access by
two threads and how to use semaphores to implement a shared counter. A condition
variable is a third synchronization device that GNU/Linux provides; with it, you can
implement more complex conditions under which threads execute.

Suppose that you write a thread function that executes a loop infinitely, performing
some work on each iteration. The thread loop, however, needs to be controlled by a
flag: The loop runs only when the flag is set; when the flag is not set, the loop pauses.

Listing 4.13 shows how you might implement this by spinning in a loop. During
each iteration of the loop, the thread function checks that the flag is set. Because the
flag is accessed by multiple threads, it is protected by a mutex. This implementation
may be correct, but it is not efficient. The thread function will spend lots of CPU
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whenever the flag is not set, checking and rechecking the flag, each time locking and
unlocking the mutex. What you really want is a way to put the thread to sleep when
the flag is not set, until some circumstance changes that might cause the flag to
become set.

Listing 4.13  (spin-condvar.c) A Simple Condition Variable Implementation

#include <pthread.h>

int thread_flag;
pthread_mutex_t thread_flag_mutex;

void initialize_flag ()

{
pthread_mutex_init (&thread_flag_mutex, NULL);
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; otherwise
spins. */

void* thread_function (void* thread_arg)

{
while (1) {
int flag_is_set;
/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
flag_is_set = thread_flag;
pthread_mutex_unlock (&thread_flag mutex);
if (flag_is_set)
do_work ();
/* Else don't do anything. Just loop again. */
}
return NULL;
}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)

{
/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
thread_flag = flag_value;
pthread_mutex_unlock (&thread_flag mutex);
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A condition variable enables you to implement a condition under which a thread exe-
cutes and, inversely, the condition under which the thread is blocked. As long as every
thread that potentially changes the sense of the condition uses the condition variable
properly, Linux guarantees that threads blocked on the condition will be unblocked
when the condition changes.

As with a semaphore, a thread may waif on a condition variable. If thread A waits
on a condition variable, it is blocked until some other thread, thread B, signals the
same condition variable. Unlike a semaphore, a condition variable has no counter or
memory; thread A must wait on the condition variable before thread B signals it. If
thread B signals the condition variable before thread A waits on it, the signal is lost,
and thread A blocks until some other thread signals the condition variable again.

This is how you would use a condition variable to make the previous sample more
efficient:

= The loop in thread_function checks the flag. If the flag is not set, the thread
waits on the condition variable.

= The set_thread_flag function signals the condition variable after changing the
flag value. That way, if thread_function is blocked on the condition variable, it
will be unblocked and will check the condition again.

There’s one problem with this: There’s a race condition between checking the

flag value and signaling or waiting on the condition variable. Suppose that
thread_function checked the flag and found that it was not set. At that moment, the
Linux scheduler paused that thread and resumed the main one. By some coincidence,
the main thread is in set_thread_flag. It sets the flag and then signals the condition
variable. Because no thread is waiting on the condition variable at the time (remember
that thread_function was paused before it could wait on the condition variable), the
signal is lost. Now, when Linux reschedules the other thread, it starts waiting on the
condition variable and may end up blocked forever.

To solve this problem, we need a way to lock the flag and the condition variable
together with a single mutex. Fortunately, GNU/Linux provides exactly this mecha-
nism. Each condition variable must be used in conjunction with a mutex, to prevent
this sort of race condition. Using this scheme, the thread function follows these steps:

1. The loop in thread_function locks the mutex and reads the flag value.
2. If the flag is set, it unlocks the mutex and executes the work function.

3. If the flag is not set, it atomically unlocks the mutex and waits on the condition
variable.

The critical feature here is in step 3, in which GNU/Linux allows you to unlock the
mutex and wait on the condition variable atomically, without the possibility of
another thread intervening. This eliminates the possibility that another thread may
change the flag value and signal the condition variable in between thread_function’s
test of the flag value and wait on the condition variable.
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A condition variable is represented by an instance of pthread_cond_t. Remember
that each condition variable should be accompanied by a mutex. These are the func-
tions that manipulate condition variables:

pthread_cond_init initializes a condition variable. The first argument is a
pointer to a pthread_cond_t instance. The second argument, a pointer to a con-
dition variable attribute object, is ignored under GNU/Linux.

The mutex must be initialized separately, as described in Section 4.4.2,
“Mutexes.”

pthread_cond_signal signals a condition variable. A single thread that 1s blocked
on the condition variable will be unblocked. If no other thread is blocked on
the condition variable, the signal is ignored. The argument is a pointer to the
pthread_cond_t instance.

A similar call, pthread_cond_broadcast, unblocks all threads that are blocked on
the condition variable, instead of just one.

pthread_cond_wait blocks the calling thread until the condition variable is sig-
naled. The argument is a pointer to the pthread_cond_t instance. The second
argument is a pointer to the pthread_mutex_t mutex instance.

When pthread_cond_wait is called, the mutex must already be locked by the
calling thread. That function atomically unlocks the mutex and blocks on the
condition variable. When the condition variable is signaled and the calling thread
unblocks, pthread_cond_wait automatically reacquires a lock on the mutex.

Whenever your program performs an action that may change the sense of the condi-

tion you’re protecting with the condition variable, it should perform these steps. (In
our example, the condition is the state of the thread flag, so these steps must be taken
whenever the flag is changed.)

1.
2.

3.
4.

Lock the mutex accompanying the condition variable.

Take the action that may change the sense of the condition (in our example, set

the flag).
Signal or broadcast the condition variable, depending on the desired behavior.

Unlock the mutex accompanying the condition variable.

Listing 4.14 shows the previous example again, now using a condition variable to
protect the thread flag. Note that in thread_function, a lock on the mutex is held
before checking the value of thread_flag. That lock is automatically released by

pthread_cond_wait before blocking and is automatically reacquired afterward. Also

note that set_thread_flag locks the mutex before setting the value of thread_flag

and signaling the mutex.
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Listing 4.14  (condvar.c) Control a Thread Using a Condition Variable

#include <pthread.h>

int thread_flag;
pthread_cond_t thread_flag_cv;
pthread_mutex_t thread_flag_mutex;

void initialize_ flag ()

{
/* Initialize the mutex and condition variable. */
pthread_mutex_init (&thread_flag mutex, NULL);
pthread_cond_init (&thread_flag_cv, NULL);
/* Initialize the flag value. */
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; blocks if
the flag is clear. */

void* thread_function (void* thread_arg)

{
/* Loop infinitely. */
while (1) {
/* Lock the mutex before accessing the flag value. */
pthread_mutex_lock (&thread_flag_mutex);
while (!thread_flag)

/* The flag is clear. Wait for a signal on the condition
variable, indicating that the flag value has changed. When the
signal arrives and this thread unblocks, loop and check the
flag again. */

pthread_cond_wait (&thread_flag_cv, &thread_flag_mutex);

/* When we've gotten here, we know the flag must be set. Unlock
the mutex. */

pthread_mutex_unlock (&thread_flag_mutex);
/* Do some work. */
do_work ();

}

return NULL;

}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)
{

/* Lock the mutex before accessing the flag value. */

pthread_mutex_lock (&thread_flag_mutex);

/* Set the flag value, and then signal in case thread_function is
blocked, waiting for the flag to become set. However,
thread_function can't actually check the flag until the mutex is
unlocked. */
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thread_flag = flag_value;
pthread_cond_signal (&thread_flag_cv);

/* Unlock the mutex. */
pthread_mutex_unlock (&thread_flag_mutex);

The condition protected by a condition variable can be arbitrarily complex. However,
before performing any operation that may change the sense of the condition, a mutex
lock should be required, and the condition variable should be signaled afterward.

A condition variable may also be used without a condition, simply as a mechanism
for blocking a thread until another thread “wakes it up.” A semaphore may also be
used for that purpose. The principal difference is that a semaphore “remembers” the
wake-up call even if no thread was blocked on it at the time, while a condition
variable discards the wake-up call unless some thread is actually blocked on it
at the time. Also, a semaphore delivers only a single wake-up per post; with
pthread_cond_broadcast, an arbitrary and unknown number of blocked threads
may be awoken at the same time.

4.4.7 Deadlocks with Two or More Threads

Deadlocks can occur when two (or more) threads are each blocked, waiting for a con-
dition to occur that only the other one can cause. For instance, if thread A is blocked
on a condition variable waiting for thread B to signal it, and thread B is blocked on a
condition variable waiting for thread A to signal it, a deadlock has occurred because
neither thread will ever signal the other.You should take care to avoid the possibility
of such situations because they are quite difficult to detect.

One common error that can cause a deadlock involves a problem in which more
than one thread is trying to lock the same set of objects. For example, consider a pro-
gram in which two different threads, running two different thread functions, need to
lock the same two mutexes. Suppose that thread A locks mutex 1 and then mutex 2,
and thread B happens to lock mutex 2 before mutex 1. In a sufficiently unfortunate
scheduling scenario, Linux may schedule thread A long enough to lock mutex 1, and
then schedule thread B, which promptly locks mutex 2. Now neither thread can
progress because each is blocked on a mutex that the other thread holds locked.

This is an example of a more general deadlock problem, which can involve not
only synchronization objects such as mutexes, but also other resources, such as locks
on files or devices. The problem occurs when multiple threads try to lock the same set
of resources in different orders. The solution is to make sure that all threads that lock
more than one resource lock them in the same order.
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4.5 GNU/Linux Thread Implementation

The implementation of POSIX threads on GNU/Linux differs from the thread imple-

mentation on many other UNIX-like systems in an important way: on GNU/Linux,
threads are implemented as processes. Whenever you call pthread_create to create a
new thread, Linux creates a new process that runs that thread. However, this process is
not the same as a process you would create with fork; in particular, it shares the same
address space and resources as the original process rather than receiving copies.

The program thread-pid shown in Listing 4.15 demonstrates this. The program
creates a thread; both the original thread and the new one call the getpid function
and print their respective process IDs and then spin infinitely.

Listing 4.15  (thread-pid) Print Process IDs for Threads

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void* thread_function (void* arg)
{
fprintf (stderr, "child thread pid is %d\n", (int) getpid ());
/* Spin forever. */
while (1);
return NULL;
}

int main ()
{
pthread_t thread;
fprintf (stderr, "main thread pid is %d\n", (int) getpid ());
pthread_create (&thread, NULL, &thread_function, NULL);
/* Spin forever. */
while (1);
return 0;

Run the program in the background, and then invoke ps x to display your running
processes. Don'’t forget to kill the thread-pid program afterward—it consumes lots of
CPU doing nothing. Here’s what the output might look like:

% cc thread-pid.c -o thread-pid -lpthread

% ./thread-pid &

[1] 14608

main thread pid is 14608

child thread pid is 14610

% pS X
PID TTY STAT  TIME COMMAND
14042 pts/9 S 0:00 bash

14608 pts/9 R 0:01 ./thread-pid
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14609 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x

% kill 14608

[1]+ Terminated ./thread-pid

Job Control Notification in the Shell

The lines starting with [ 1] are from the shell. When you run a program in the background, the shell
assigns a job number to it—in this case, 1—and prints out the program's pid. If a background job termi-
nates, the shell reports that fact the next time you invoke a command.

Notice that there are three processes running the thread-pid program.The first of
these, with pid 14608, is the main thread in the program; the third, with pid 14610, is
the thread we created to execute thread_function.

How about the second thread, with pid 14609? This is the “manager thread,” which
is part of the internal implementation of GNU/Linux threads. The manager thread is
created the first time a program calls pthread_create to create a new thread.

4.5.1 Signal Handling

Suppose that a multithreaded program receives a signal. In which thread is the signal
handler invoked? The behavior of the interaction between signals and threads varies
from one UNIX-like system to another. In GNU/Linux, the behavior is dictated by
the fact that threads are implemented as processes.

Because each thread is a separate process, and because a signal is delivered to a par-
ticular process, there is no ambiguity about which thread receives the signal. Typically,
signals sent from outside the program are sent to the process corresponding to the
main thread of the program. For instance, if a program forks and the child process
execs a multithreaded program, the parent process will hold the process id of the main
thread of the child process’s program and will use that process id to send signals to its
child. This is generally a good convention to follow yourself when sending signals to a
multithreaded program.

Note that this aspect of GNU/Linux’s implementation of pthreads is at variance
with the POSIX thread standard. Do not rely on this behavior in programs that are
meant to be portable.

‘Within a multithreaded program, it is possible for one thread to send a signal
specifically to another thread. Use the pthread_kill function to do this. Its first para-
meter is a thread ID, and its second parameter is a signal number.

4.5.2 The clone System Call

Although GNU/Linux threads created in the same program are implemented as sepa-
rate processes, they share their virtual memory space and other resources. A child
process created with fork, however, gets copies of these items. How is the former type
of process created?
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The Linux clone system call is a generalized form of fork and pthread_create that
allows the caller to specify which resources are shared between the calling process and
the newly created process. Also, clone requires you to specify the memory region for
the execution stack that the new process will use. Although we mention clone here to
satisfy the reader’s curiosity, that system call should not ordinarily be used in programs.
Use fork to create new processes or pthread_create to create threads.

4.6 Processes Vs. Threads

For some programs that benefit from concurrency, the decision whether to use
processes or threads can be difficult. Here are some guidelines to help you decide
which concurrency model best suits your program:

= All threads in a program must run the same executable. A child process, on the
other hand, may run a different executable by calling an exec function.

= An errant thread can harm other threads in the same process because threads
share the same virtual memory space and other resources. For instance, a wild
memory write through an uninitialized pointer in one thread can corrupt
memory visible to another thread.

An errant process, on the other hand, cannot do so because each process has a
copy of the program’s memory space.

= Copying memory for a new process adds an additional performance overhead
relative to creating a new thread. However, the copy is performed only when
the memory is changed, so the penalty is minimal if the child process only reads
memory.

= Threads should be used for programs that need fine-grained parallelism. For
example, if a problem can be broken into multiple, nearly identical tasks, threads
may be a good choice. Processes should be used for programs that need coarser
parallelism.

= Sharing data among threads is trivial because threads share the same memory.
(However, great care must be taken to avoid race conditions, as described previ-
ously.) Sharing data among processes requires the use of IPC mechanisms, as
described in Chapter 5. This can be more cumbersome but makes multiple
processes less likely to suffer from concurrency bugs.



Interprocess Communication

CHAPTER 3, “PROCESSES,” DISCUSSED THE CREATION OF PROCESSES and showed
how one process can obtain the exit status of a child process. That’s the simplest form
of communication between two processes, but it’s by no means the most powerful. The
mechanisms of Chapter 3 don’t provide any way for the parent to communicate with
the child except via command-line arguments and environment variables, nor any way
for the child to communicate with the parent except via the child’s exit status. None
of these mechanisms provides any means for communicating with the child process
while it is actually running, nor do these mechanisms allow communication with a
process outside the parent-child relationship.

This chapter describes means for interprocess communication that circumvent these
limitations. We will present various ways for communicating between parents and chil-
dren, between “unrelated” processes, and even between processes on different
machines.

Interprocess communication (IPC) 1s the transfer of data among processes. For example,
a Web browser may request a Web page from a Web server, which then sends HTML
data. This transfer of data usually uses sockets in a telephone-like connection. In
another example, you may want to print the filenames in a directory using a command
such as 1s | 1pr.The shell creates an 1s process and a separate 1pr process, connecting
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the two with a pipe, represented by the ¢

‘| symbol. A pipe permits one-way commu-
nication between two related processes. The 1s process writes data into the pipe, and
the 1pr process reads data from the pipe.

In this chapter, we discuss five types of interprocess communication:

= Shared memory permits processes to communicate by simply reading and
writing to a specified memory location.

= Mapped memory is similar to shared memory, except that it is associated with a
file in the filesystem.

= Pipes permit sequential communication from one process to a related process.

= FIFOs are similar to pipes, except that unrelated processes can communicate

because the pipe is given a name in the filesystem.

= Sockets support communication between unrelated processes even on different
computers.

These types of IPC differ by the following criteria:

s Whether they restrict communication to related processes (processes with a
common ancestor), to unrelated processes sharing the same filesystem, or to any
computer connected to a network

= Whether a communicating process is limited to only write data or only
read data

= The number of processes permitted to communicate

= Whether the communicating processes are synchronized by the IPC—for
example, a reading process halts until data is available to read

In this chapter, we omit discussion of [PC permitting communication only a limited
number of times, such as communicating via a child’s exit value.

5.1 Shared Memory

One of the simplest interprocess communication methods is using shared memory.
Shared memory allows two or more processes to access the same memory as if they all
called malloc and were returned pointers to the same actual memory. When one
process changes the memory, all the other processes see the modification.

5.1.1 Fast Local Communication

Shared memory is the fastest form of interprocess communication because all
processes share the same piece of memory. Access to this shared memory is as fast as
accessing a process’s nonshared memory, and it does not require a system call or entry
to the kernel. It also avoids copying data unnecessarily.
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Because the kernel does not synchronize accesses to shared memory, you must pro-
vide your own synchronization. For example, a process should not read from the
memory until after data is written there, and two processes must not write to the same
memory location at the same time. A common strategy to avoid these race conditions
is to use semaphores, which are discussed in the next section. Our illustrative pro-
grams, though, show just a single process accessing the memory, to focus on the shared
memory mechanism and to avoid cluttering the sample code with synchronization
logic.

5.1.2 The Memory Model

To use a shared memory segment, one process must allocate the segment. Then each
process desiring to access the segment must attach the segment. After finishing its use
of the segment, each process detaches the segment. At some point, one process must
deallocate the segment.

Understanding the Linux memory model helps explain the allocation and attach-
ment process. Under Linux, each process’s virtual memory is split into pages. Each
process maintains a mapping from its memory addresses to these virtual memory pages,
which contain the actual data. Even though each process has its own addresses, multiple
processes’ mappings can point to the same page, permitting sharing of memory.
Memory pages are discussed further in Section 8.8,“The mlock Family: Locking
Physical Memory,” of Chapter 8, “Linux System Calls.”

Allocating a new shared memory segment causes virtual memory pages to be cre-
ated. Because all processes desire to access the same shared segment, only one process
should allocate a new shared segment. Allocating an existing segment does not create
new pages, but it does return an identifier for the existing pages. To permit a process
to use the shared memory segment, a process attaches it, which adds entries mapping
from its virtual memory to the segment’s shared pages. When finished with the seg-
ment, these mapping entries are removed. When no more processes want to access
these shared memory segments, exactly one process must deallocate the virtual
MMemory pages.

All shared memory segments are allocated as integral multiples of the system’s page
size, which is the number of bytes in a page of memory. On Linux systems, the page
size is 4KB, but you should obtain this value by calling the getpagesize function.

5.1.3 Allocation

A process allocates a shared memory segment using shmget (“SHared Memory
GET?”). Its first parameter is an integer key that specifies which segment to create.
Unrelated processes can access the same shared segment by specifying the same key
value. Unfortunately, other processes may have also chosen the same fixed key, which
could lead to conflict. Using the special constant IPC_PRIVATE as the key value guaran-
tees that a brand new memory segment is created.
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Its second parameter specifies the number of bytes in the segment. Because seg-
ments are allocated using pages, the number of actually allocated bytes is rounded up
to an integral multiple of the page size.

The third parameter is the bitwise or of flag values that specify options to shmget.
The flag values include these:

= IPC_CREAT—This flag indicates that a new segment should be created. This per-
mits creating a new segment while specifying a key value.

= IPC_EXCL—This flag, which is always used with IPC_CREAT, causes shmget to fail
if a segment key is specified that already exists. Therefore, it arranges for the call-
ing process to have an “exclusive” segment. If this flag is not given and the key
of an existing segment is used, shmget returns the existing segment instead of
creating a new orne.

= Mode flags—This value is made of 9 bits indicating permissions granted to
owner, group, and world to control access to the segment. Execution bits are
ignored. An easy way to specify permissions is to use the constants defined in
<sys/stat.h> and documented in the section 2 stat man page.' For example,
S_IRUSR and S_IWUSR specify read and write permissions for the owner of the
shared memory segment, and S_IROTH and S_IWOTH specify read and write per-
missions for others.

For example, this invocation of shmget creates a new shared memory segment (or
access to an existing one, if shm_key is already used) that’s readable and writeable to
the owner but not other users.

int segment_id = shmget (shm_key, getpagesize (),

IPC_CREAT | S_IRUSR | S_IWUSER);

If the call succeeds, shmget returns a segment identifier. If the shared memory segment
already exists, the access permissions are verified and a check is made to ensure that
the segment is not marked for destruction.

5.1.4 Attachment and Detachment

To make the shared memory segment available, a process must use shmat, “SHared
Memory ATtach.” Pass it the shared memory segment identifier SHMID returned by
shmget. The second argument is a pointer that specifies where in your process’s address
space you want to map the shared memory; if you specify NULL, Linux will choose
an available address. The third argument is a flag, which can include the following:

= SHM_RND indicates that the address specified for the second parameter should be
rounded down to a multiple of the page size. If you don't specify this flag, you
must page-align the second argument to shmat yourself.

= SHM_RDONLY indicates that the segment will be only read, not written.

1. These permission bits are the same as those used for files. They are described in Section

10.3, “File System Permissions.”
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If the call succeeds, it returns the address of the attached shared segment. Children cre-
ated by calls to fork inherit attached shared segments; they can detach the shared
memory segments, if desired.

When you're finished with a shared memory segment, the segment should be
detached using shmdt (“SHared Memory DeTach”). Pass it the address returned by
shmat. If the segment has been deallocated and this was the last process using it, it is
removed. Calls to exit and any of the exec family automatically detach segments.

5.1.5 Controlling and Deallocating Shared Memory

The shmetl (“SHared Memory ConTroL”) call returns information about a shared
memory segment and can modify it. The first parameter is a shared memory segment
identifier.

To obtain information about a shared memory segment, pass IPC_STAT as the
second argument and a pointer to a struct shmid_ds.

To remove a segment, pass IPC_RMID as the second argument, and pass NULL as the
third argument. The segment is removed when the last process that has attached it
finally detaches it.

Each shared memory segment should be explicitly deallocated using shmctl when
you’re finished with it, to avoid violating the systemwide limit on the total number of
shared memory segments. Invoking exit and exec detaches memory segments but
does not deallocate them.

See the shmctl man page for a description of other operations you can perform on
shared memory segments.

5.1.6 An Example Program

The program in Listing 5.1 illustrates the use of shared memory.

Listing 5.1  (shm.c) Exercise Shared Memory

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main ()
{
int segment_id;
char* shared_memory;
struct shmid_ds shmbuffer;
int segment_size;
const int shared_segment_size = 0x6400;

/* Allocate a shared memory segment. */
segment_id = shmget (IPC_PRIVATE, shared_segment_size,
IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

continues
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Listing 5.1 Continued

/* Attach the shared memory segment. */
shared_memory = (char*) shmat (segment_id, 0, 0);
printf ("shared memory attached at address %p\n", shared_memory);
/* Determine the segment's size. */

shmctl (segment_id, IPC_STAT, &shmbuffer);
segment_size = shmbuffer.shm_segsz;

printf ("segment size: %d\n", segment_size);

/* Write a string to the shared memory segment. */
sprintf (shared_memory, "Hello, world.");

/* Detach the shared memory segment. */

shmdt (shared_memory);

/* Reattach the shared memory segment, at a different address. */
shared_memory = (char*) shmat (segment_id, (void*) 0x5000000, 0);
printf ("shared memory reattached at address %p\n", shared_memory);
/* Print out the string from shared memory. */

printf ("%s\n", shared_memory);

/* Detach the shared memory segment. */

shmdt (shared_memory);

/* Deallocate the shared memory segment. */
shmctl (segment_id, IPC_RMID, 0);

return 0;

5.1.7 Debugging
The ipcs command provides information on interprocess communication facilities,
including shared segments. Use the -m flag to obtain information about shared
memory. For example, this code illustrates that one shared memory segment,
numbered 1627649, is in use

% ipcs -m

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x00000000 1627649  user 640 25600 0

If this memory segment was erroneously left behind by a program, you can use the
ipcrm command to remove it.

% ipcrm shm 1627649
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5.1.8 Pros and Cons

Shared memory segments permit fast bidirectional communication among any number
of processes. Each user can both read and write, but a program must establish and fol-
low some protocol for preventing race conditions such as overwriting information
before it is read. Unfortunately, Linux does not strictly guarantee exclusive access even
if you create a new shared segment with IPC_PRIVATE.

Also, for multiple processes to use a shared segment, they must make arrangements
to use the same key.

5.2 Processes Semaphores

As noted in the previous section, processes must coordinate access to shared memory.
As we discussed in Section 4.4.5, “Semaphores for Threads,” in Chapter 4, “Threads,”
semaphores are counters that permit synchronizing multiple threads. Linux provides a
distinct alternate implementation of semaphores that can be used for synchronizing
processes (called process semaphores or sometimes System V semaphores). Process sem-
aphores are allocated, used, and deallocated like shared memory segments. Although a
single semaphore is sufficient for almost all uses, process semaphores come in sets.
Throughout this section, we present system calls for process semaphores, showing how
to implement single binary semaphores using them.

5.2.1 Allocation and Deallocation

The calls semget and semctl allocate and deallocate semaphores, which is analogous to
shmget and shmctl for shared memory. Invoke semget with a key specifying a sema-
phore set, the number of semaphores in the set, and permission flags as for shmget; the
return value is a semaphore set identifier. You can obtain the identifier of an existing
semaphore set by specifying the right key value; in this case, the number of sema-
phores can be zero.

Semaphores continue to exist even after all processes using them have terminated.
The last process to use a semaphore set must explicitly remove it to ensure that the
operating system does not run out of semaphores. To do so, invoke semctl with the
semaphore identifier, the number of semaphores in the set, IPC_RMID as the third argu-
ment, and any union semun value as the fourth argument (which is ignored). The
effective user ID of the calling process must match that of the semaphore’s allocator
(or the caller must be root). Unlike shared memory segments, removing a semaphore
set causes Linux to deallocate immediately.

Listing 5.2 presents functions to allocate and deallocate a binary semaphore.
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Listing 5.2 (sem_all_deall.c) Allocating and Deallocating a Binary Semaphore

#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h>

/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

b

/* Obtain a binary semaphore's ID, allocating if necessary. */

int binary_semaphore_allocation (key_t key, int sem_flags)

{

return semget (key, 1, sem_flags);

}

/* Deallocate a binary semaphore. All users must have finished their
use. Returns -1 on failure. */

int binary_semaphore_deallocate (int semid)
{
union semun ignored_argument;
return semctl (semid, 1, IPC_RMID, ignored_argument);

}

5.2.2 Initializing Semaphores

Allocating and initializing semaphores are two separate operations. To initialize a sema-
phore, use semctl with zero as the second argument and SETALL as the third argument.
For the fourth argument, you must create a union semun object and point its array
field at an array of unsigned short values. Each value is used to initialize one sema-
phore in the set.

Listing 5.3 presents a function that initializes a binary semaphore.

Listing 5.3  (sem_init.c) Initializing a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
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/* We must define union semun ourselves. */

union semun {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;

b
/* Initialize a binary semaphore with a value of 1. */

int binary_semaphore_initialize (int semid)
{
union semun argument;
unsigned short values[1];
values[0] = 1;
argument.array = values;
return semctl (semid, @, SETALL, argument);

5.2.3 Wiait and Post Operations

Each semaphore has a non-negative value and supports wait and post operations. The

semop system call implements both operations. Its first parameter specifies a semaphore

set identifier. Its second parameter is an array of struct sembuf elements, which specify

the operations you want to perform. The third parameter is the length of this array.
The fields of struct sembuf are listed here:

= sem_num is the semaphore number in the semaphore set on which the operation
is performed.

= sem_op is an integer that specifies the semaphore operation.

If sem_op is a positive number, that number is added to the semaphore value
immediately.

If sem_op is a negative number, the absolute value of that number is subtracted
from the semaphore value. If this would make the semaphore value negative, the
call blocks until the semaphore value becomes as large as the absolute value of
sem_op (because some other process increments it).

If sem_op is zero, the operation blocks until the semaphore value becomes zero.

= sem_flg is a flag value. Specify IPC_NOWAIT to prevent the operation from
blocking; if the operation would have blocked, the call to semop fails instead.
If you specify SEM_UNDO, Linux automatically undoes the operation on the
semaphore when the process exits.
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Listing 5.4 illustrates wait and post operations for a binary semaphore.

Listing 5.4  (sem_pv.c) Wait and Post Operations for a Binary Semaphore

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

/* Wait on a binary semaphore. Block until the semaphore value is positive, then
decrement it by 1. */

int binary_semaphore_wait (int semid)

{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[@].sem_num = 0;
/* Decrement by 1. */
operations[0].sem_op = -1;
/* Permit undo'ing. */
operations[@].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);

}

/* Post to a binary semaphore: increment its value by 1.
This returns immediately. */

int binary_semaphore_post (int semid)

{
struct sembuf operations[1];
/* Use the first (and only) semaphore. */
operations[@].sem_num = 0;
/* Increment by 1. */
operations[@].sem_op = 1;
/* Permit undo'ing. */
operations[@].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);

Specifying the SEM_UNDO flag permits dealing with the problem of terminating a
process while it has resources allocated through a semaphore. When a process termi-
nates, either voluntarily or involuntarily, the semaphore’s values are automatically
adjusted to “undo” the process’s effects on the semaphore. For example, if a process
that has decremented a semaphore is killed, the semaphore’s value is incremented.
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5.2.4 Debugging Semaphores

Use the command ipcs -s to display information about existing semaphore sets. Use
the ipcrm sem command to remove a semaphore set from the command line. For
example, to remove the semaphore set with identifier 5790517, use this line:

o

% ipcrm sem 5790517

5.3 Mapped Memory

Mapped memory permits different processes to communicate via a shared file.
Although you can think of mapped memory as using a shared memory segment
with a name, you should be aware that there are technical differences. Mapped
memory can be used for interprocess communication or as an easy way to access
the contents of a file.

Mapped memory forms an association between a file and a process’s memory.
Linux splits the file into page-sized chunks and then copies them into virtual memory
pages so that they can be made available in a process’s address space. Thus, the process
can read the file’s contents with ordinary memory access. It can also modify the file’s
contents by writing to memory. This permits fast access to files.

You can think of mapped memory as allocating a buffer to hold a file’s entire con-
tents, and then reading the file into the bufter and (if the buffer is modified) writing
the buffer back out to the file afterward. Linux handles the file reading and writing
operations for you.

There are uses for memory-mapped files other than interprocess communication.
Some of these are discussed in Section 5.3.5, “Other Uses for mmap.”

5.3.1 Mapping an Ordinary File

To map an ordinary file to a process’s memory, use the mmap (“Memory MAPped,”
pronounced “em-map”) call. The first argument is the address at which you would like
Linux to map the file into your process’s address space; the value NULL allows Linux
to choose an available start address. The second argument is the length of the map in
bytes. The third argument specifies the protection on the mapped address range. The
protection consists of a bitwise “or” of PROT_READ, PROT_WRITE, and PROT_EXEC, corre-
sponding to read, write, and execution permission, respectively. The fourth argument is
a flag value that specifies additional options. The fifth argument is a file descriptor
opened to the file to be mapped. The last argument is the offset from the beginning of
the file from which to start the map.You can map all or part of the file into memory
by choosing the starting offset and length appropriately.

The flag value is a bitwise “or” of these constraints:

= MAP_FIXED—If you specify this flag, Linux uses the address you request to map
the file rather than treating it as a hint. This address must be page-aligned.

= MAP_PRIVATE—Writes to the memory range should not be written back to the
attached file, but to a private copy of the file. No other process sees these writes.
This mode may not be used with MAP_SHARED.
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= MAP_SHARED—W/rites are immediately reflected in the underlying file rather than
buffering writes. Use this mode when using mapped memory for IPC. This
mode may not be used with MAP_PRIVATE.

If the call succeeds, it returns a pointer to the beginning of the memory. On failure, it
returns MAP_FAILED.

When you're finished with a memory mapping, release it by using munmap. Pass it
the start address and length of the mapped memory region. Linux automatically
unmaps mapped regions when a process terminates.

5.3.2 Example Programs

Let’s look at two programs to illustrate using memory-mapped regions to read and
write to files. The first program, Listing 5.5, generates a random number and writes it
to a memory-mapped file. The second program, Listing 5.6, reads the number, prints
it, and replaces it in the memory-mapped file with double the value. Both take a
command-line argument of the file to map.

Listing 5.5  (mmap-write.c) Write a Random Number to a Memory-Mapped File

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

/* Return a uniformly random number in the range [low,high]. */

int random_range (unsigned const low, unsigned const high)
{

unsigned const range = high - low + 1;

return low + (int) (((double) range) * rand () / (RAND_MAX + 1.0));
}

int main (int argc, char* const argv[])
{

int fd;

void* file_memory;

/* Seed the random number generator. */
srand (time (NULL));

/* Prepare a file large enough to hold an unsigned integer. */
fd = open (argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
lseek (fd, FILE_LENGTH+1, SEEK_SET);
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write (fd, "", 1);
lseek (fd, 0, SEEK_SET);

/* Create the memory mapping. */

file_memory = mmap (@, FILE_LENGTH, PROT_WRITE, MAP_SHARED, fd, 0);
close (fd);

/* Write a random integer to memory-mapped area. */
sprintf((char*) file memory, "%d\n", random_range (-100, 100));

/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;

The mmap-write program opens the file, creating it if it did not previously exist. The
third argument to open specifies that the file is opened for reading and writing.
Because we do not know the file’s length, we use 1seek to ensure that the file is large
enough to store an integer and then move back the file position to its beginning.

The program maps the file and then closes the file descriptor because it’s no longer
needed. The program then writes a random integer to the mapped memory, and thus
the file, and unmaps the memory. The munmap call is unnecessary because Linux would
automatically unmap the file when the program terminates.

Listing 5.6  (mmap-read.c) Read an Integer from a Memory-Mapped File, and
Double It

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#define FILE_LENGTH 0x100

int main (int argc, char* const argv[])
{

int fd;

void* file_memory;

int integer;

/* Open the file. */

fd = open (argv[1], O_RDWR, S_IRUSR | S_IWUSR);

/* Create the memory mapping. */

file_memory = mmap (@, FILE_LENGTH, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

close (fd);

continues
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Listing 5.6 Continued

/* Read the integer, print it out, and double it. */

scanf (file_memory, "%d", &integer);

printf ("value: %d\n", integer);

sprintf ((char*) file_memory, "%d\n", 2 * integer);

/* Release the memory (unnecessary because the program exits). */
munmap (file_memory, FILE_LENGTH);

return 0;

The mmap-read program reads the number out of the file and then writes the doubled
value to the file. First, it opens the file and maps it for reading and writing. Because
we can assume that the file is large enough to store an unsigned integer, we need not
use 1lseek, as in the previous program. The program reads and parses the value out
of memory using sscanf and then formats and writes the double value using sprintf.

Here’s an example of running these example programs. It maps the file
/tmp/integer-file.

% ./mmap-write /tmp/integer-file

% cat /tmp/integer-file

42

% ./mmap-read /tmp/integer-file

value: 42

% cat /tmp/integer-file

84
Observe that the text 42 was written to the disk file without ever calling write, and
was read back in again without calling read. Note that these sample programs write
and read the integer as a string (using sprintf and sscanf) for demonstration purposes
only—there’s no need for the contents of a memory-mapped file to be text.You can
store and retrieve arbitrary binary in a memory-mapped file.

5.3.3 Shared Access to a File

Different processes can communicate using memory-mapped regions associated with
the same file. Specify the MAP_SHARED flag so that any writes to these regions are
immediately transferred to the underlying file and made visible to other processes.
If you don'’t specify this flag, Linux may buffer writes before transferring them to
the file.

Alternatively, you can force Linux to incorporate buffered writes into the disk file
by calling msync. Its first two parameters specify a memory-mapped region, as for
munmap. The third parameter can take these flag values:

= MS_ASYNC—The update is scheduled but not necessarily run before the call
returns.

= MS_SYNC—The update is immediate; the call to msync blocks until it’s done.
MS_SYNC and MS_ASYNC may not both be used.
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= MS_INVALIDATE—AI other file mappings are invalidated so that they can see the
updated values.

For example, to flush a shared file mapped at address mem_addr of length mem_length
bytes, call this:

msync (mem_addr, mem_length, MS_SYNC | MS_INVALIDATE);

As with shared memory segments, users of memory-mapped regions must establish
and follow a protocol to avoid race conditions. For example, a semaphore can be used
to prevent more than one process from accessing the mapped memory at one time.
Alternatively, you can use fentl to place a read or write lock on the file, as described
in Section 8.3,“fcntl: Locks and Other File Operations,” in Chapter 8.

5.3.4 Private Mappings

Specifying MAP_PRIVATE to mmap creates a copy-on-write region. Any write to the
region is reflected only in this process’s memory; other processes that map the same
file won't see the changes. Instead of writing directly to a page shared by all processes,
the process writes to a private copy of this page. All subsequent reading and writing by
the process use this page.

5.3.5 Other Uses for mmap

The mmap call can be used for purposes other than interprocess communications. One
common use is as a replacement for read and write. For example, rather than explic-
itly reading a file’s contents into memory, a program might map the file into memory
and scan it using memory reads. For some programs, this is more convenient and may
also run faster than explicit file I/O operations.

One advanced and powerful technique used by some programs is to build data
structures (ordinary struct instances, for example) in a memory-mapped file. On a
subsequent invocation, the program maps that file back into memory, and the data
structures are restored to their previous state. Note, though, that pointers in these data
structures will be invalid unless they all point within the same mapped region of
memory and unless care is taken to map the file back into the same address region
that it occupied originally.

Another handy technique is to map the special /dev/zero file into memory. That
file, which is described in Section 6.5.2,“/dev/zero,” of Chapter 6, “Devices,” behaves
as if it were an infinitely long file filled with O bytes. A program that needs a source of
0 bytes can mmap the file /dev/zero. Writes to /dev/zero are discarded, so the mapped
memory may be used for any purpose. Custom memory allocators often map
/dev/zero to obtain chunks of preinitialized memory.
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5.4 Pipes

A pipe is a communication device that permits unidirectional communication. Data
written to the “write end” of the pipe is read back from the “read end.” Pipes are
serial devices; the data is always read from the pipe in the same order it was written.
Typically, a pipe is used to communicate between two threads in a single process or
between parent and child processes.

In a shell, the symbol | creates a pipe. For example, this shell command causes the
shell to produce two child processes, one for 1s and one for less:

% 1s | less

The shell also creates a pipe connecting the standard output of the 1s subprocess with
the standard input of the less process. The filenames listed by 1s are sent to less in
exactly the same order as if they were sent directly to the terminal.

A pipe’s data capacity is limited. If the writer process writes faster than the reader
process consumes the data, and if the pipe cannot store more data, the writer process
blocks until more capacity becomes available. If the reader tries to read but no data is
available, it blocks until data becomes available. Thus, the pipe automatically synchro-
nizes the two processes.

5.4.1 Creating Pipes

To create a pipe, invoke the pipe command. Supply an integer array of size 2. The call
to pipe stores the reading file descriptor in array position 0 and the writing file
descriptor in position 1. For example, consider this code:

int pipe_fds[2];

int read_fd;

int write_fd;

pipe (pipe_fds);
read_fd = pipe_fds[0];
write_fd = pipe_fds[1];

Data written to the file descriptor read_fd can be read back from write_fd.

5.4.2 Communication Between Parent and Child Processes

A call to pipe creates file descriptors, which are valid only within that process and its
children. A process’s file descriptors cannot be passed to unrelated processes; however,
when the process calls fork, file descriptors are copied to the new child process. Thus,
pipes can connect only related processes.

In the program in Listing 5.7, a fork spawns a child process. The child inherits the
pipe file descriptors. The parent writes a string to the pipe, and the child reads it out.
The sample program converts these file descriptors into FILE* streams using fdopen.
Because we use streams rather than file descriptors, we can use the higher-level
standard C library I/O functions such as printf and fgets.
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Listing 5.7  (pipe.c) Using a Pipe to Communicate with a Child Process

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second
between each. */

void writer (const char* message, int count, FILE* stream)
{
for (; count > @; --count) {
/* Write the message to the stream, and send it off immediately. */
fprintf (stream, "%s\n", message);
fflush (stream);
/* Snooze a while. */
sleep (1);
}
}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)
{
char buffer[1024];
/* Read until we hit the end of the stream. fgets reads until
either a newline or the end-of-file. */
while (!feof (stream)
&& !ferror (stream)
&& fgets (buffer, sizeof (buffer), stream) != NULL)
fputs (buffer, stdout);
}

int main ()

{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */
pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
FILE* stream;
/* This is the child process. Close our copy of the write end of
the file descriptor. */
close (fds[1]);
/* Convert the read file descriptor to a FILE object, and read
from it. */
stream = fdopen (fds[0], "r");
reader (stream);

continues
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Listing 5.7 Continued

close (fds[0]);

}

else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], "w");
writer ("Hello, world.", 5, stream);
close (fds[1]);

}

return 0;

}

At the beginning of main, fds is declared to be an integer array with size 2. The pipe
call creates a pipe and places the read and write file descriptors in that array. The pro-
gram then forks a child process. After closing the read end of the pipe, the parent
process starts writing strings to the pipe. After closing the write end of the pipe, the
child reads strings from the pipe.

Note that after writing in the writer function, the parent flushes the pipe by
calling fflush. Otherwise, the string may not be sent through the pipe immediately.

When you invoke the command 1s | less, two forks occur: one for the 1s child
process and one for the less child process. Both of these processes inherit the pipe file
descriptors so they can communicate using a pipe. To have unrelated processes com-
municate, use a FIFO instead, as discussed in Section 5.4.5, “FIFOs.”

5.4.3 Redirecting the Standard Input, Output, and Error
Streams

Frequently, you’ll want to create a child process and set up one end of a pipe as its
standard input or standard output. Using the dup2 call, you can equate one file
descriptor with another. For example, to redirect a process’s standard input to a file
descriptor fd, use this line:

dup2 (fd, STDIN_FILENO);

The symbolic constant STDIN_FILENO represents the file descriptor for the standard
input, which has the value 0.The call closes standard input and then reopens it as a
duplicate of fd so that the two may be used interchangeably. Equated file descriptors
share the same file position and the same set of file status flags. Thus, characters read
from fd are not reread from standard input.
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The program in Listing 5.8 uses dup2 to send the output from a pipe to the sort
command.” After creating a pipe, the program forks. The parent process prints some
strings to the pipe.The child process attaches the read file descriptor of the pipe to its
standard input using dup2. It then executes the sort program.

Listing 5.8  (dup2.c) Redirect Output from a Pipe with dup2

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main ()

{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */

pipe (fds);
/* Fork a child process. */
pid = fork ();

if (pid == (pid_t) 0) {
/* This is the child process. Close our copy of the write end of
the file descriptor. */
close (fds[1]);
/* Connect the read end of the pipe to standard input. */
dup2 (fds[@], STDIN_FILENO);
/* Replace the child process with the "sort" program. */
execlp ("sort", "sort", 0);
}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write
to it. */
stream = fdopen (fds[1], "w");
fprintf (stream, "This is a test.\n");
fprintf (stream, "Hello, world.\n");
fprintf (stream, "My dog has fleas.\n");
fprintf (stream, "This program is great.\n");
fprintf (stream, "One fish, two fish.\n");
fflush (stream);
close (fds[1]);
/* Wait for the child process to finish. */
waitpid (pid, NULL, 0);
}

return 0;

}

2. sort reads lines of text from standard input, sorts them into alphabetical order, and prints

them to standard output.
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5.4.4 popen and pclose

A common use of pipes is to send data to or receive data from a program being run in
a subprocess. The popen and pclose functions ease this paradigm by eliminating the
need to invoke pipe, fork, dup2, exec, and fdopen.

Compare Listing 5.9, which uses popen and pclose, to the previous example
(Listing 5.8).

Listing 5.9  (popen.c) Example Using popen

#include <stdio.h>
#include <unistd.h>

int main ()

{
FILE* stream = popen ("sort", "w");
fprintf (stream, "This is a test.\n");
fprintf (stream, "Hello, world.\n");
fprintf (stream, "My dog has fleas.\n");
fprintf (stream, "This program is great.\n");
fprintf (stream, "One fish, two fish.\n");
return pclose (stream);

The call to popen creates a child process executing the sort command, replacing calls
to pipe, fork, dup2, and execlp. The second argument, "w", indicates that this process
wants to write to the child process. The return value from popen is one end of a pipe;
the other end is connected to the child process’s standard input. After the writing fin-
ishes, pclose closes the child process’s stream, waits for the process to terminate, and
returns its status value.

The first argument to popen is executed as a shell command in a subprocess run-
ning /bin/sh.The shell searches the PATH environment variable in the usual way to
find programs to execute. If the second argument is "r", the function returns the child
process’s standard output stream so that the parent can read the output. If the second
argument is "w", the function returns the child process’s standard input stream so that
the parent can send data. If an error occurs, popen returns a null pointer.

Call pclose to close a stream returned by popen. After closing the specified stream,
pclose waits for the child process to terminate.

5.4.5 FIFOs

A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem. Any process
can open or close the FIFO; the processes on either end of the pipe need not be
related to each other. FIFOs are also called named pipes.
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You can make a FIFO using the mkfifo command. Specify the path to the FIFO
on the command line. For example, create a FIFO in /tmp/fifo by invoking this:

% mkfifo /tmp/fifo

% 1s -1 /tmp/fifo

prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo
The first character of the output from 1s is p, indicating that this file is actually a
FIFO (named pipe). In one window, read from the FIFO by invoking the following;:

% cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:

% cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the line of text is sent
through the FIFO and appears in the first window. Close the FIFO by pressing
Ctrl+D in the second window. Remove the FIFO with this line:

% rm /tmp/fifo

Creating a FIFO

Create a FIFO programmatically using the mkfifo function. The first argument is the
path at which to create the FIFO; the second parameter specifies the pipe’s owner,
group, and world permissions, as discussed in Chapter 10, “Security,” Section 10.3,
“File System Permissions.” Because a pipe must have a reader and a writer, the permis-
sions must include both read and write permissions. If the pipe cannot be created

(for instance, if a file with that name already exists), mkfifo returns —1. Include
<sys/types.h> and <sys/stat.h> if you call mkfifo.

Accessing a FIFO

Access a FIFO just like an ordinary file. To communicate through a FIFO, one pro-
gram must open it for writing, and another program must open it for reading. Either
low-level 170 functions (open, write, read, close, and so on, as listed in Appendix B,
“Low-Level I/O”) or C library I/O functions (fopen, fprintf, fscanf, fclose, and so
on) may be used.
For example, to write a buffer of data to a FIFO using low-level I/O routines, you

could use this code:

int fd = open (fifo_path, O_WRONLY);

write (fd, data, data_length);

close (fd);
To read a string from the FIFO using C library I/O functions, you could use
this code:

FILE* fifo = fopen (fifo_path, "r");

fscanf (fifo, "%s", buffer);

fclose (fifo);
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A FIFO can have multiple readers or multiple writers. Bytes from each writer are
written atomically up to a maximum size of PIPE_BUF (4KB on Linux). Chunks from
simultaneous writers can be interleaved. Similar rules apply to simultaneous reads.

Differences from Windows Named Pipes

Pipes in the Win32 operating systems are very similar to Linux pipes. (Refer to the
Win32 library documentation for technical details about these.) The main differences
concern named pipes, which, for Win32, function more like sockets. Win32 named
pipes can connect processes on separate computers connected via a network. On
Linux, sockets are used for this purpose. Also, Win32 allows multiple reader-writer
connections on a named pipe without interleaving data, and pipes can be used for
two-way communication.’

5.5 Sockets

A socket 1s a bidirectional communication device that can be used to communicate with
another process on the same machine or with a process running on other machines.
Sockets are the only interprocess communication we’ll discuss in this chapter that
permit communication between processes on different computers. Internet programs
such as Telnet, rlogin, FTP, talk, and the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using the
Telnet program because they both use sockets for network communications.*
To open a connection to a WWW server at www.codesourcery.com, use
telnet www.codesourcery.com 80.The magic constant 80 specifies a connection to
the Web server programming running www.codesourcery.com instead of some other
process. Try typing GET / after the connection is established. This sends a message
through the socket to the Web server, which replies by sending the home page’s
HTML source and then closing the connection—for example:

% telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is '"]'.

GET /

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

3. Note that only Windows NT can create a named pipe; Windows 9x programs can form
only client connections.

4. Usually, you'd use telnet to connect a Telnet server for remote logins. But you can also use
telnet to connect to a server of a different kind and then type comments directly at it.
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5.5.1 Socket Concepts

When you create a socket, you must specify three parameters: communication style,
namespace, and protocol.

A communication style controls how the socket treats transmitted data and specifies
the number of communication partners. When data is sent through a socket, it is pack-
aged into chunks called packets. The communication style determines how these
packets are handled and how they are addressed from the sender to the receiver.

s Connection styles guarantee delivery of all packets in the order they were sent. If
packets are lost or reordered by problems in the network, the receiver automati-
cally requests their retransmission from the sender.

A connection-style socket is like a telephone call: The addresses of the sender
and receiver are fixed at the beginning of the communication when the connec-
tion is established.

= Datagram styles do not guarantee delivery or arrival order. Packets may be lost or
reordered in transit due to network errors or other conditions. Each packet must
be labeled with its destination and is not guaranteed to be delivered. The system
guarantees only “best effort,” so packets may disappear or arrive in a different
order than shipping.

A datagram-style socket behaves more like postal mail. The sender specifies the
receiver’s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket address identi-
fies one end of a socket connection. For example, socket addresses in the “local name-
space” are ordinary filenames. In “Internet namespace,” a socket address is composed of
the Internet address (also known as an Internet Protocol address or IP address) of a host
attached to the network and a port number. The port number distinguishes among
multiple sockets on the same host.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the pri-
mary networking protocols used by the Internet; the AppleTalk network protocol; and
the UNIX local communication protocol. Not all combinations of styles, namespaces,
and protocols are supported.

5.5.2 System Calls

Sockets are more flexible than previously discussed communication techniques. These
are the system calls involving sockets:
socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets
bind—Labels a server socket with an address
listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.
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Creating and Destroying Sockets

The socket and close functions create and destroy sockets, respectively. When you
create a socket, specify the three socket choices: namespace, communication style, and
protocol. For the namespace parameter, use constants beginning with PF_ (abbreviating
“protocol families”). For example, PF_LOCAL or PF_UNIX specifies the local namespace,
and PF_INET specifies Internet namespaces. For the communication style parameter, use
constants beginning with SOCK_. Use SOCK_STREAM for a connection-style socket, or use
SOCK_DGRAM for a datagram-style socket.

The third parameter, the protocol, specifies the low-level mechanism to transmit
and receive data. Each protocol is valid for a particular namespace-style combination.
Because there is usually one best protocol for each such pair, specifying 0 is usually the
correct protocol. If socket succeeds, it returns a file descriptor for the socket.You can
read from or write to the socket using read, write, and so on, as with other file
descriptors. When you are finished with a socket, call close to remove it.

Calling connect

To create a connection between two sockets, the client calls connect, specifying the
address of a server socket to connect to. A client is the process initiating the connec-
tion, and a server is the process waiting to accept connections. The client calls connect
to initiate a connection from a local socket to the server socket specified by the
second argument. The third argument is the length, in bytes, of the address structure
pointed to by the second argument. Socket address formats difter according to the
socket namespace.

Sending Information

Any technique to write to a file descriptor can be used to write to a socket. See
Appendix B for a discussion of Linux’s low-level I/O functions and some of the issues
surrounding their use. The send function, which is specific to the socket file descrip-
tors, provides an alternative to write with a few additional choices; see the man page
for information.

5.5.3 Servers

A server’ life cycle consists of the creation of a connection-style socket, binding an
address to its socket, placing a call to listen that enables connections to the socket,
placing calls to accept incoming connections, and then closing the socket. Data isn’t
read and written directly via the server socket; instead, each time a program accepts a
new connection, Linux creates a separate socket to use in transferring data over that
connection. In this section, we introduce bind, listen, and accept.
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An address must be bound to the server’s socket using bind if a client is to find it.
Its first argument is the socket file descriptor. The second argument is a pointer to a
socket address structure; the format of this depends on the socket’s address family. The
third argument is the length of the address structure, in bytes. When an address is
bound to a connection-style socket, it must invoke listen to indicate that it is a
server. Its first argument is the socket file descriptor. The second argument specifies
how many pending connections are queued. If the queue is full, additional connec-
tions will be rejected. This does not limit the total number of connections that a server
can handle; it limits just the number of clients attempting to connect that have not yet
been accepted.

A server accepts a connection request from a client by invoking accept. The first
argument is the socket file descriptor. The second argument points to a socket address
structure, which is filled with the client socket’s address. The third argument is the
length, in bytes, of the socket address structure. The server can use the client address to
determine whether it really wants to communicate with the client. The call to accept
creates a new socket for communicating with the client and returns the corresponding
file descriptor. The original server socket continues to accept new client connections.
To read data from a socket without removing it from the input queue, use recv. It
takes the same arguments as read, plus an additional FLAGS argument. A flag of
MSG_PEEK causes data to be read but not removed from the input queue.

5.5.4 Local Sockets

Sockets connecting processes on the same computer can use the local namespace
represented by the synonyms PF_LOCAL and PF_UNIX.These are called local sockets or
UNIX-domain sockets. Their socket addresses, specified by filenames, are used only when
creating connections.

The socket’s name is specified in struct sockaddr_un.You must set the sun_family
field to AF_LOCAL, indicating that this is a local namespace. The sun_path field specifies
the filename to use and may be, at most, 108 bytes long. The actual length of
struct sockaddr_un should be computed using the SUN_LEN macro. Any filename can
be used, but the process must have directory write permissions, which permit adding
files to the directory. To connect to a socket, a process must have read permission for
the file. Even though different computers may share the same filesystem, only processes
running on the same computer can communicate with local namespace sockets.

The only permissible protocol for the local namespace is 0.

Because it resides in a file system, a local socket is listed as a file. For example,
notice the initial s:

% 1s -1 /tmp/socket

SPWXIPWX - - X 1 user  group 0 Nov 13 19:18 /tmp/socket

Call unlink to remove a local socket when you’re done with it.
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5.5.5 An Example Using Local Namespace Sockets

We illustrate sockets with two programs. The server program, in Listing 5.10, creates a

local namespace socket and listens for connections on it. When it receives a connec-

tion, it reads text messages from the connection and prints them until the connection

closes. If one of these messages is “quit,” the server program removes the socket and

ends. The socket-server program takes the path to the socket as its command-line

argument.

Listing 5.10  (socket-server.c) Local Namespace Socket Server

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

/* Read text from the socket and print it out. Continue until the

socket closes. Return nonzero if the client sent a "quit"
message, zero otherwise. */

int server (int client_socket)

{

}

while (1) {
int length;
char* text;
/* First, read the length of the text message from the socket. If
read returns zero, the client closed the connection. */
if (read (client_socket, &length, sizeof (length)) == 0)
return 0;
/* Allocate a buffer to hold the text. */
text = (char*) malloc (length);
/* Read the text itself, and print it. */
read (client_socket, text, length);
printf ("%s\n", text);
/* Free the buffer. */
free (text);
/* If the client sent the message "quit," we're all done. */
if (!strcmp (text, "quit"))
return 1;
}

int main (int argc, char* const argv[])

{

const char* const socket_name = argv[1];
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int socket_fd;
struct sockaddr_un name;
int client_sent_quit_message;

/* Create the socket. */

socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);
/* Indicate that this is a server. */
name.sun_family = AF_LOCAL;

strcpy (name.sun_path, socket_name);

bind (socket_fd, &name, SUN_LEN (&name));

/* Listen for connections. */

listen (socket_fd, 5);

/* Repeatedly accept connections, spinning off one server() to deal
with each client. Continue until a client sends a "quit" message. */

do {

struct sockaddr_un client_name;
socklen_t client_name_len;
int client_socket_fd;

/* Accept a connection. */

client_socket_fd = accept (socket_fd, &client_name, &client_name_len);
/* Handle the connection. */

client_sent_quit_message = server (client_socket_fd);

/* Close our end of the connection. */

close (client_socket fd);

}

while (!client_sent_quit_message);

/* Remove the socket file. */
close (socket_fd);
unlink (socket_name);

return 0;

The client program, in Listing 5.11, connects to a local namespace socket and sends
a message. The name path to the socket and the message are specified on the
command line.

Listing 5.11  (socket-client.c) Local Namespace Socket Client

#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<sys/socket.h>
<sys/un.h>
<unistd.h>

continues
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Listing 5.11 Continued

/* Write TEXT to the socket given by file descriptor SOCKET_FD.

void write_text (int socket_fd, const char* text)

{

}

/* Write the number of bytes in the string, including
NUL-termination. */

int length = strlen (text) + 1;

write (socket_fd, &length, sizeof (length));

/* Write the string. */

write (socket_fd, text, length);

int main (int argc, char* const argv[])

{

const char* const socket_name = argv[1];
const char* const message = argv[2];

int socket_fd;

struct sockaddr_un name;

/* Create the socket. */

socket_fd = socket (PF_LOCAL, SOCK_STREAM, 0);

/* Store the server's name in the socket address. */
name.sun_family = AF_LOCAL;

strcpy (name.sun_path, socket_name);

/* Connect the socket. */

connect (socket_fd, &name, SUN_LEN (&name));

/* Write the text on the command line to the socket. */
write_text (socket_fd, message);

close (socket_fd);

return 0;

*/

Before the client sends the message text, it sends the length of that text by sending the
bytes of the integer variable length. Likewise, the server reads the length of the text by
reading from the socket into an integer variable. This allows the server to allocate an
appropriately sized buffer to hold the message text before reading it from the socket.
To try this example, start the server program in one window. Specify a path to a
socket—for example, /tmp/socket.

)
i)

./socket-server /tmp/socket

In another window, run the client a few times, specifying the same socket path plus
messages to send to the client:

)
i)

)
%

./socket-client /tmp/socket "Hello, world."
./socket-client /tmp/socket "This is a test."
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The server program receives and prints these messages. To close the server, send the
message “quit” from a client:

% ./socket-client /tmp/socket "quit"

The server program terminates.

5.5.6 Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two processes
on the same computer. Internet-domain sockets, on the other hand, may be used to con-
nect processes on different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace rep-
resented by PF_INET. The most common protocols are TCP/IP. The Internet Protocol
(IP), a low-level protocol, moves packets through the Internet, splitting and rejoining
the packets, if necessary. It guarantees only “best-effort” delivery, so packets may vanish
or be reordered during transport. Every participating computer is specified using a
unique IP number. The Tiansmission Control Protocol (TCP), layered on top of IP, pro-
vides reliable connection-ordered transport. It permits telephone-like connections to
be established between computers and ensures that data is delivered reliably and in
order.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS) associates names
such as www.codesourcery.com with computers' unique IP numbers. DNS is implemented by a world-
wide hierarchy of name servers, but you don't need to understand DNS protocols to use Internet host

names in your programs.

Internet socket addresses contain two parts: a machine and a port number. This infor-
mation is stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET
to indicate that this is an Internet namespace address. The sin_addr field stores the
Internet address of the desired machine as a 32-bit integer IP number. A port number
distinguishes a given machine’s difterent sockets. Because different machines store
multibyte values in different byte orders, use htons to convert the port number to
network byte order. See the man page for ip for more information.

To convert human-readable hostnames, either numbers in standard dot notation
(such as 10.0.0.1) or DNS names (such as www.codesourcery.com) into 32-bit [P
numbers, you can use gethostbyname. This returns a pointer to the struct hostent
structure; the h_addr field contains the host’s IP number. See the sample program in
Listing 5.12.

Listing 5.12 illustrates the use of Internet-domain sockets. The program obtains the
home page from the Web server whose hostname is specified on the command line.
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Listing 5.12  (socket-inet.c) Read from a WWW Server

#include <stdlib.h>
#include <stdio.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>

/* Print the contents of the home page for the server's socket.
Return an indication of success. */

void get_home_page (int socket_fd)
{

char buffer[10000];

ssize_t number_characters_read;

/* Send the HTTP GET command for the home page. */
sprintf (buffer, "GET /\n");

write (socket_fd, buffer, strlen (buffer));

/* Read from the socket. The call to read may not
return all the data at one time, so keep

trying until we run out. */

while (1) {
number_characters_read = read (socket_fd, buffer, 10000);
if (number_characters_read == 0)
return;

/* Write the data to standard output. */
fwrite (buffer, sizeof (char), number_characters_read, stdout);
}
}

int main (int argc, char* const argv[])
{

int socket_fd;

struct sockaddr_in name;

struct hostent* hostinfo;

/* Create the socket. */
socket_fd = socket (PF_INET, SOCK_STREAM, 0);
/* Store the server's name in the socket address. */
name.sin_family = AF_INET;
/* Convert from strings to numbers. */
hostinfo = gethostbyname (argv[1]);
if (hostinfo == NULL)
return 1;
else
name.sin_addr = *((struct in_addr *) hostinfo->h_addr);
/* Web servers use port 80. */
name.sin_port = htons (80);
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/* Connect to the Web server */

if (connect (socket_fd, &name, sizeof (struct sockaddr_in)) == -1) {
perror ("connect");
return 1;

}

/* Retrieve the server's home page. */
get_home_page (socket_fd);

return 0;

This program takes the hostname of the Web server on the command line (not a
URL—that 1s, without the “http://”). It calls gethostbyname to translate the hostname
into a numerical IP address and then connects a stream (TCP) socket to port 80 on
that host. Web servers speak the Hypertext Transport Protocol (HTTP), so the program
issues the HTTP GET command and the server responds by sending the text of the
home page.

Standard Port Numbers

By convention, Web servers listen for connections on port 80. Most Internet network services are associ-
ated with a standard port number. For example, secure Web servers that use SSL listen for connections
on port 443, and mail servers (which speak SMTP) use port 25.

On GNU/Linux systems, the associations between protocol/service names and standard port numbers are
listed in the file /etc/services. The first column is the protocol or service name. The second column
lists the port number and the connection type: tcp for connection-oriented, or udp for datagram.

If you implement custom network services using Internet-domain sockets, use port numbers greater
than 1024.

For example, to retrieve the home page from the Web site www.codesourcery.com,
invoke this:

% ./socket-inet www.codesourcery.com
<html>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

5.5.7 Socket Pairs

As we saw previously, the pipe function creates two file descriptors for the beginning
and end of a pipe. Pipes are limited because the file descriptors must be used by
related processes and because communication is unidirectional. The socketpair func-
tion creates two file descriptors for two connected sockets on the same computer.
These file descriptors permit two-way communication between related processes.
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Its first three parameters are the same as those of the socket call: They specify the
domain, connection style, and protocol. The last parameter is a two-integer array,
which is filled with the file descriptions of the two sockets, similar to pipe. When you
call socketpair, you must specify PF_LOCAL as the domain.
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Devices

LINU‘X, LIKE MOST OPERATING SYSTEMS, INTERACTS WITH HARDWARE devices via
modularized software components called device drivers. A device driver hides the pecu-
liarities of a hardware device’s communication protocols from the operating system
and allows the system to interact with the device through a standardized interface.

Under Linux, device drivers are part of the kernel and may be either linked stati-
cally into the kernel or loaded on demand as kernel modules. Device drivers run as
part of the kernel and aren’t directly accessible to user processes. However, Linux pro-
vides a mechanism by which processes can communicate with a device driver—and
through it with a hardware device—via file-like objects. These objects appear in the
file system, and programs can open them, read from them, and write to them practi-
cally as if they were normal files. Using either Linux’s low-level I/O operations (see
Appendix B, “Low-Level I/O”) or the standard C library’s I/O operations, your pro-
grams can communicate with hardware devices through these file-like objects.

Linux also provides several file-like objects that communicate directly with the
kernel rather than with device drivers. These aren’t linked to hardware devices; instead,
they provide various kinds of specialized behavior that can be of use to application and
system programs.
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Exercise Caution When Accessing Devices!

The techniques in this chapter provide direct access to device drivers running in the Linux kernel, and
through them to hardware devices connected to the system. Use these techniques with care because mis-
use can cause impair or damage the GNU/Linux system.

See especially the sidebar "Dangers of Block Devices."

6.1 Device Types

Device files aren’t ordinary files—they do not represent regions of data on a disk-
based file system. Instead, data read from or written to a device file is communicated
to the corresponding device driver, and from there to the underlying device. Device
files come in two flavors:

= A character device represents a hardware device that reads or writes a serial stream
of data bytes. Serial and parallel ports, tape drives, terminal devices, and sound
cards are examples of character devices.

= A block device represents a hardware device that reads or writes data in fixed-size
blocks. Unlike a character device, a block device provides random access to data
stored on the device. A disk drive is an example of a block device.

Typical application programs will never use block devices. While a disk drive is repre-

sented as block devices, the contents of each disk partition typically contain a file sys-

tem, and that file system is mounted into GNU/Linux’s root file system tree. Only the
kernel code that implements the file system needs to access the block device directly;

application programs access the disk’s contents through normal files and directories.

Dangers of Block Devices

Block devices provide direct access to disk drive data. Although most GNU/Linux systems are configured
to prevent nonroot processes from accessing these devices directly, a root process can inflict severe dam-
age by changing the contents of the disk. By writing to a disk block device, a program can modify or
destroy file system control information and even a disk's partition table and master boot record, thus
rendering a drive or even the entire system unusable. Always access these devices with great care.

Applications sometimes make use of character devices, though. We’ll discuss several
of them in the following sections.

6.2 Device Numbers

Linux identifies devices using two numbers: the major device number and the minor device
number. The major device number specifies which driver the device corresponds to.
The correspondence from major device numbers to drivers is fixed and part of the
Linux kernel sources. Note that the same major device number may correspond to
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two different drivers, one a character device and one a block device. Minor device
numbers distinguish individual devices or components controlled by a single driver.
The meaning of a minor device number depends on the device driver.

For example, major device no. 3 corresponds to the primary IDE controller on the
system. An IDE controller can have two devices (disk, tape, or CD-ROM drives)
attached to it; the “master” device has minor device no. 0, and the “slave” device has
minor device no. 64. Individual partitions on the master device (if the device supports
partitions) are represented by minor device numbers 1, 2, 3, and so on. Individual parti-
tions on the slave device are represented by minor device numbers 65, 66, 67, and so on.

Major device numbers are listed in the Linux kernel sources documentation.

On many GNU/Linux distributions, this documentation can be found in
/usr/src/linux/Documentation/devices.txt.The special entry /proc/devices lists
major device numbers corresponding to active device drivers currently loaded into the
kernel. (See Chapter 7,“The /proc File System,” for more information about /proc
file system entries.)

6.3 Device Entries

A device entry is in many ways the same as a regular file.You can move it using the mv
command and delete it using the rm command. If you try to copy a device entry using
cp, though, you’ll read bytes from the device (if the device supports reading) and write
them to the destination file. If you try to overwrite a device entry, you’ll write bytes to
the corresponding device instead.

You can create a device entry in the file system using the mknod command (invoke
man 1 mknod for the man page) or the mknod system call (invoke man 2 mknod for the
man page). Creating a device entry in the file system doesn’t automatically imply that
the corresponding device driver or hardware device is present or available; the device
entry is merely a portal for communicating with the driver, if it’s there. Only superuser
processes can create block and character devices using the mknod command or the
mknod system call.

To create a device using the mknod command, specify as the first argument the path
at which the entry will appear in the file system. For the second argument, specify b
for a block device or ¢ for a character device. Provide the major and minor device
numbers as the third and fourth arguments, respectively. For example, this command
makes a character device entry named 1p0 in the current directory. The device has
major device no. 6 and minor device no. 0. These numbers correspond to the first par-
allel port on the Linux system.

% mknod ./1p0 c 6 0
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Remember that only superuser processes can create block and character devices, so
you must be logged in as root to invoke this command successtully.

The 1s command displays device entries specially. If you invoke 1s with the -1 or
-0 options, the first character on each line of output specifies the type of the entry.
Recall that - (a hyphen) designates a normal file, while d designates a directory.
Similarly, b designates a block device, and ¢ designates a character device. For the latter
two, 1s prints the major and minor device numbers where it would the size of an
ordinary file. For example, we can display the block device that we just created:

% 1s -1 1p0

crw-r----- 1 root root 6, 0 Mar 7 17:03 1p0

In a program, you can determine whether a file system entry is a block or character
device and then retrieve its device numbers using stat. See Section B.2,“stat,” in
Appendix B, for instructions.

To remove the entry, use rm. This doesn’t remove the device or device driver; it
simply removes the device entry from the file system.

% rm ./1p0

6.3.1 The /dev Directory

By convention, a GNU/Linux system includes a directory /dev containing the full
complement of character and block device entries for devices that Linux knows about.
Entries in /dev have standardized names corresponding to major and minor device
numbers.

For example, the master device attached to the primary IDE controller, which has
major and minor device numbers 3 and 0, has the standard name /dev/hda. If this
device supports partitions, the first partition on it, which has minor device no. 1, has
the standard name /dev/hdai1.You can check that this is true on your system:

% 1s -1 /dev/hda /dev/hdal

brw-rw- - - - 1 root disk 3, 0 May 5 1998 /dev/hda

brw-rw- - - - 1 root disk 3, 1 May 5 1998 /dev/hdatl
Similarly, /dev has an entry for the parallel port character device that we used
previously:

% 1ls -1 /dev/1p0

Crw-rw- - - - 1 root daemon 6, © May 5 1998 /dev/1p0

In most cases, you should not use mknod to create your own device entries. Use the
entries in /dev instead. Non-superuser programs have no choice but to use preexisting
device entries because they cannot create their own. Typically, only system administra-
tors and developers working with specialized hardware devices will need to create
device entries. Most GNU/Linux distributions include facilities to help system
administrators create standard device entries with the correct names.
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6.3.2 Accessing Devices by Opening Files

How do you use these devices? In the case of character devices, it can be quite simple:
Open the device as if it were a normal file, and read from or write to it.You can even
use normal file commands such as cat, or your shell’s redirection syntax, to send data
to or from the device.

For example, if you have a printer connected to your computer’s first parallel port,
you can print files by sending them directly to /dev/1p@." To print the contents of
document.txt, invoke the following:

% cat document.txt > /dev/1p0

You must have permission to write to the device entry for this to succeed; on many
GNU/Linux systems, the permissions are set so that only root and the system’s printer
daemon (1pd) can write to the file. Also, what comes out of your printer depends on
how your printer interprets the contents of the data you send it. Some printers will
print plain text files that are sent to them,” while others will not. PostScript printers
will render and print PostScript files that you send to them.

In a program, sending data to a device is just as simple. For example, this code frag-
ment uses low-level I/0 functions to send the contents of a buffer to /dev/1po0.

int fd = open ("/dev/1p@", O_WRONLY);

write (fd, buffer, buffer_length);

close (fd);

6.4 Hardware Devices

Some common block devices are listed in Table 6.1. Device numbers for similar
devices follow the obvious pattern (for instance, the second partition on the first SCSI
drive is /dev/sda2). It’s occasionally useful to know which devices these device names
correspond to when examining mounted file systems in /proc/mounts (see Section
7.5, “Drives, Mounts, and File Systems,” in Chapter 7, for more about this).

Table 6.1 Partial Listing of Common Block Devices

Device Name Major Minor
First floppy drive /dev/fdo 2 0
Second floppy drive /dev/fd1 2 1
Primary IDE controller, master device /dev/hda 3 0
Primary IDE controller, master device, /dev/hdai 3 1

first partition

continues

1. Windows users will recognize that this device is similar to the magic Windows file LPR1.
2. Your printer may require explicit carriage return characters, ASCII code 14, at the end of
each line, and may require a form feed character, ASCII code 12, at the end of each page.
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Table 6.1 Continued

Device Name Major Minor
Primary IDE controller, secondary device /dev/hdb 3 64
Primary IDE controller, secondary device, /dev/hdb1 3 65
first partition

Secondary IDE controller, master device /dev/hdc 22 0
Secondary IDE controller, secondary device /dev/hdd 22 64
First SCSI drive /dev/sda 8 0
First SCSI drive, first partition /dev/sdal 8

Second SCSI disk /dev/sdb 8 16
Second SCSI disk, first partition /dev/sdb1 8 17
First SCSI CD-ROM drive /dev/scdo 11 0
Second SCSI CD-ROM drive /dev/scdl 11 1

Table 6.2 lists some common character devices.

Table 6.2 Some Common Character Devices

Device Name Major Minor
Parallel port 0 /dev/1p®@ or /dev/par® 6 0
Parallel port 1 /dev/1p1 or /dev/pari 6 1
First serial port /dev/ttySo 4 64
Second serial port /dev/ttyS1 4 65
IDE tape drive /dev/ht0 37

First SCSI tape drive /dev/st0 9

Second SCSI tape drive /dev/st1 9 1
System console /dev/console 5 1
First virtual terminal /dev/tty1 4 1
Second virtual terminal /dev/tty2 4 2
Process’s current terminal device  /dev/tty 5 0
Sound card /dev/audio 14 4

You can access certain hardware components through more than one character device;
often, the different character devices provide different semantics. For example, when
you use t